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Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive elec-
troproduction processes require a generalization of usual parton distributions for the case when
long-distance information is accumulated in nonforward matrix elements (p'}(0, 2)ip} of quark
and gluon light-cone operators. We describe two types of nonperturbalive functions parametriz-
ing such matrix elements: double distributions F(z,yit) and nonforward distribution functions
F¢(X;1), discusa their spectral properties, evolution equations which they satisfy, basic uses and
general aspects of factorization for hard exclusive processes.
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1. INTRODUCTION

The standard feature of applications of perturbative QCD to hard processes is the intraduction of phenomenolog-
ical functions accumulating information about nonperturbative long-distance dynamics. The well-known examplea
are the parton distribution functions f,;g{z) [1} used in perturbative QCD approaches to hard inclusive processes
and distribution amplitudes @4 (z), wn{z), 22, xa), which naturally emerge in the asymptotic QCD analyses of hard
exclusive processes {2-7}. Recently, it was argued [8,9) that the amplitudes of hard exclusive p-meson electropro-
duction processes ai small z are determined by the same gluon distribution function f,(z) used for description
of hard inclusive processea (see also [10]). Furthermore, it was proposed [11] to use another exclusive process of
deeply virtual Compton scattering (DVCS) for measuring quark distribution functions inaccessible in inclusive
measurements (nonforward Compton amplitudes were discussed also in [12,9]). In fact, the kinematics of hard
elastic electroproduction processes (DVCS can be also treated 2s one of them) requires the presente of the longi-
tudinal comp t in the tum transfer r 5 p — p' from the initial hadron to the final: | = ¢p, where { for
@* >> #|, m} reduces to the Bjorken variable z5; = @?/2(pq) associated with the virtual photon momentum q.
This means that the nonperturbative matrix element (p'| ... |p) is essentially aaymmetrie and, strictly apeaking, the
distributions which appear in the hard elastic electroproduction amplitudes differ from those studied in inclusive
processes, In the latter case, one always deals with a symmetric situation when the same momentum p appears in
both brackets of the hadronic matrix element {p|...|p}.

For diffractive processes, one deais with a kinematic situation when bath the variable ¢ specifying the longi-
tudinal momentum asymmetry of the nonperturbative matrix element {p’|...lp) and the absclute value of the
momentum tranafer { = (p' — p)? are small. Studying the DVCS proceas, one should be able to consider the whole
region 0 < ( < 1 and ¢ ~ 1 GeV? [13]. In this situation, one deals with essentially nonforwerd (or off-ferward in
terminology of ref. [11]) kinematics for the matrix element (p'. .. [p). The besics of the pQCD spproach incorpo-
rating asymmetric/off-forward parton distributions were formulated in refs. {11,14,15,k3]. A detailed analysis of
pQCD factarization for hard meson electroproduction processes was given in rel. [16]. Applications of asymmetzric
gluon distributions to elastic diffractive J/y electroproduction were discussed in {17-19]. In » recent paper [20],
the off-forward quark distributions were studied within the MIT bag model!. Thus, there is an increasing interest
in the studies of these new typea of hadron distributions, their general properties and applications.

Qur goal in the present paper is to give s detailed description of the approach outlined in our earlier papers [14,15}.
The basic idea of refa. [14,16] is that constructing & consistent pQCD approach for amplitudes of hard exclusive
electroproduction processes one should treat the initial momentum p and the longitudinal part of the momentum
transfer r on equal footing by introducing doubie distributions F(z,y), which specify the fractions of p and g
carried by the constituents of the nucleon. These distributions have hybrid properties: they look like distribution
functions with respect to = and like distribution amplitudes with respect to y. Writing metrix elernenta of composite
operators in terms of double distributions is the starting point of constructing the pQCD parton picture. Another
important elep is taking into account the logarithmic sealing violation. The evolution kernels R{z,y;£,n) for
double distributions have a remarkable property: they produce the GLAPD evolution kernels P(z/€) [22-24] when
integrated over y, while integrating R(x,y; £, ) over = one obtains the BL-type evolution kernels V(y, ) [6,7) for the
relevant distribution amplitudest. One can use these properties of the kernels to construct formal solutions of the
one-loop evolution equations for the double distributions. The longitudinal momentum tranafer ry is proportional
to p: rj = (p and, for this reagon, it is convenient to parametrize matrix elements (p ~ |...|p) by asymmetric
distribulion functions F((X) apecifying the total light-cone fractions Xp, (X —{}p of the initial hadror momentum
p carried by the “outgoing” and “returning” partonsf. It should be emphasized that double distributions F (2. v}

1Just before completing the present paper, [ waa informed by M. Strikman about a numerical study [2t] of the evolution
of the msymmetric gluon distribution.

!Originally, the evolution equation for the pion distribusion amplitude in QCD was derived and solved in ref. [5], where
the anomalous dimension matrix Zny was used instesd of Viz,y) (see aleo [25]).

YThe asymmetric distribution functions defined in ref. [15] are similac to, but not coinciding with the t — 0 Limit of the

are universal functions in the sense that they do not depend on the momentum asymmetry parameter { while the
asymmietric distribution functions #((X) form a family of X-dependent functions changing their shape when { is
¢hanged. The functions F¢{X) aiso have hybrid properties. In the region X > { the returning parton carries a
positive fraction (X — {)p of the initial momentum p, and hence F;(X) 1s sirnilar to the usual parton distribution
F(X). On the other hand, in the region 0 £ X < ¢ the difference X — ( is negative, i.e., the second parton sheuld
be treated as propagaling together with the firat one. The partons in this case share the longitudina! momentum
transfer r; = (p in fractions ¥ = X/¢ and 1 — Y. This means that in the region X < { the fanction F¢(X)
looks like & distribution amplitude. It is possible to formulate equations governing the evolution of the asymmetric
distribution functions }'" (X) and establish refations between these functions, double distributions F(z,y) and
usual distribution functions f(=} [14,15].

Coustracting a QCD parton picture for hard electroproduction processes, it is very important to know spectral
properties of the relevant parton distributions F{z,y) and F¢(X). Using the approach [26] based on the a-
representation analysis [27-30], it is posaible to prove that double distributions F(z,y} have a natural property
that both = and y satisfy the “parton” constraints 0 < £ < 1, 0 < y < 1 for any Feynman diagram contributing
to F{x,y). A less obvious restriction 0 < £ + y < 1 guarantees that the argument X = z + » of the asymmetric
distribution F¢{X) also changes between the limits 0 and 1. An important observation here is that X = 0 can
be obtained only if both z = 0 and y = 0. Because of vanishing phase space for such a configuration, cne may
expect that asymmetric distributions F¢{X) vanish for X = 0. This property is very essential, because the hard
subprocess amplitudes usually contain 1/X factors. When F;(0} # 0, one faces a singularity F¢(X}/X at the
end-point of the integration region 0 € X < 1. Since such a singularity is not integrable, factorization of short-
and long-distance contributions does not work in that case.

The paper is organized in the following way. In Section 11, we consider parton distributions in a toy scalar model.
Despite its simplicity, it shares many common features with the realistic QCD case. In pariicular, the spectral
properties of distribution functions are not affected by the numerators of quark and gluon propagators, detivatives
in triple-gluon vertices, ete. Hence, studying a scalar model we just concentrate on the denominator structure of
the relevant momentum integrals, which is the same in both theories. We start with the simplest example of the
usual {forward) distribution f{z) and then consider more and more complicated functions: the double distribution
F(z,y), asymmetric distribution function F¢(X) and nonforward distribution F(X;t). Explicit expressions for
these functions at one-loop level are obtained with the help of the a-representation. Using the latter one can
eagily establish the spectral properties of the distribution functions. The a-representation also provides a very
effective starting point for a general analysis of factorization and large-Q® behavior of elastic amplitudes. In
Section I11, we outline the all-order extension of the one-loop analysis. We give an ail-order definition of the double
distribution function F(z,y) and demonstrate that it has the spectral properties 0 < {z,p, 2+ y} < 1. We show
how one can use the a-tepresentation analysis for finding integration regions responsible for the leading large-Q?
contributions. We also discuss modifications of twist counting rules in QCD due to cancellations between different
gluonic contributions in Feynman gauge and other complications which appear in gauge theories. In Section 1V, we
give definitions of nonforward distributions F¢(X;{) in QCD. Just like the usual distribution functions f(r) and
distribution amplitudes (), the new distributions depend on the factorization scale g, 1.c., it 18 more appropriate
to use the notation F;(X;¢; ) for the nonforward distributions rather than simply F¢(X:t). Evolution equations
governing the p-dependence of the nonforward distributions are discussed in Sections V and V1. We show how
one can obtain evolution kernels for nouforward distributions using already known kernels B{u, v) of the evolution
equation for the light-cone operators [31]. Since this equation has an operator form, substituiing it into a specific
matrix element one can convert H{u, v} into desired evolution kermels. In particular, taking {p|...{p) one obtaine
the GLAPD kernels, chaosing {0] . . . |p) one gets BL-type kernels while resorting to (p'| ... [p} and parametrizing the
matrix elementa through F(#,v) or F¢(X} one ends up with the kernels Rix, y; £, 1) and W (X, Z) governing the
evolution of double and asymmetric/nonforward distributions, tespectively. In Section V, we discuss the derivation

off-forward parton distributions introduced by X.Ji [L1], see Section IX.



of the evolution kernels W,(X, Z) for the nonforward distributions. We show, in particular, that in the region
0 < {X, 2} < ¢, the kernels W(X, Z) reduce to the BL-type kernels V(X Z) caleulated for rescaled variables
X{¢, Z{¢. This result is very natural, since F¢[X) can be treated as a distribution amplitude when X < ¢. In the
opposite limit { < {X,Z} < 1, the evolution is similar to that of the GLAP equation, the basic distinction being
the difference between the outgoing X, Z and returning X’ = X —¢{, 2’ = Z —{ momentum fractions. We show that
writing the kernels W¢(X, Z) in terms of the fractions X, X', Z, Z’ in the region { < {X, Z} < 1 gives the functions
W(X, X'; 2, Z') which have the symmetry property with respect to the interchange of initial and final partons:
WX, X 2,2) = W(X"X;2',Z). For { =0onehas X = X', Z = Z' and the kernels W;_¢(X,Z) acquire
the GLAPD form. In Section VI, we discuss the QCD evolution of the nonforward distributions. Qualitatively,
the evolution can be deseribed in the following way. Due to the GLAP-iype evolution in the X > ( region, the
momenta of partons decrense, and distributions shift into the regions of smaller X. However, when the parton
momentum degrades to values smaller than the momentum transfer r = {p, the further evolution is like that for a
distribution amplitude: it tends to maks the distribution symmetric (or antisymmetric) with respect to the central
point X = {/2 of the {0,() segment. In section VII, we briefly discuss two basic uses of nonforward distributions:
deeply virtusl Compton scattering snd hard elastic meson electroproduction. In particular, we show how to
cotnibine the definition of the gluon distribution through the matrix element of the gauge-invariant gluonic operator
Gpo(0)Ea(0, z; A)G,(2) with the usual Feynman rules formulated for the vector potential A7. In Section VIII,
we discuss possible sources of pQGD factorization breaking for hard elastic electroproduciion processes, due to
singularities at the end-points of the integration region. In particular, we emphasize the importance of establishing
the F¢(0)} = 0 property for the nonforward distributions. In Section IX, we compare our notations, definitions
and terminology with those used by other authors (off-forward parton distributions H(z,£;t) introduced by X. Ji
[1t] and non-diagonal distributions f(z1,72) defined by Collins, Frankfurt and Strikman {16]). Section X contains
concluding rematks,

II. FORWARD AND NONFORWARD DISTRIBUTIONS IN SCALAR TOY MODEL
A. Introductory remarks

The nonforward parton distributions F¢(X;¢; u) parametrizing matrix elements (p'|0(0, 2)]p) of composite two-
body operators (X0, z) on the light cone 2 = 0 depend on four parameters. In addition to the “usual” parton
variable X gpecifying the fraction Xp of the initial hadron momentum p carried by the active parton (more
formally, X may be treated as the Fourier-conjugate parameter to {pz)}, the functions Fc (Xt 4} also depend on
the invarisnt momentum transfer t = (p' — p)?, the longitudinal momentum asymmetry parameter { = (rz)/(pz)
(where r = p — p") and the evolution/factorization scale 4. The latter characterizes the subtraction procedure for
singularities that appear on the light cone 57 = 0 (in general, u may be different from the scale pg introduced by
the R-operation for ordinary UV divergences, but the usual convention is to take p = ug). Furthermote, depending
on the type of the composite operator O(0, z), one would get quark, antiquark, flavor-singlet, flavor-nonsinglet,
glucnie, apin-dependent, spin-independent, efc. distributions. In this situation, we propoae to follow a step by step
approach. We will start with simplest examples and then gradually proceed to more complicated ones. For this
reason, we consider first a loy scalar model. The lowest nontrivial level corresponds to one loop Feynman diagrams.
The relevant integrals are easily calculable, and their study provides useful information about the atructure of the
nonforward distributions, especially about their spectral properiies, because the latier are insensitive to numerators
of quark and gluon propagators and other complications brought in by the apin sttucture of the realistic QCD case.

B. Forward distribution functions

Qur atarting point is the scalar analog of the usual “forward” parton distribution functions f(z). Conaider a
one-loop box diagram for a scalar version of the virtual forward Compton amplitude (Figs.la, ). Both incoming
and outgoing virtual “photons” have momentum ¢ = ¢’ ~(p, where ¢ and p are lightlike momenta(g')? = 0,p? = 0.

The “photons” couple with the constant e to a massive scalar “quark” field 4. The initia) and final hadrons are
imitated by massiess scalar particles with the momentum p. Their coupling to the quarks is specified by a constant
g. In these notations, ¢* = —Q7 = —2((p¢’). Since (pg} = (py’), the parameter { coincides with the Bjorken
variable { = xg; = */2(pg). Using the a-representation for the scalar propagators

1 7 e -miio
v iy pur il A [ do (2.1}

and calculating the resulting Gaussian integral over the loop momentum k we obtain for the diagram la:

edg? ™ , . oa— oz + oy +ay) dﬂ]dﬂgd&gdﬂ|
Talp.a) = —mj; exp {' [2(N )ﬂlm Afm? —")]} — 2.9

We use the shorthand notation A = a; + az + ay + 4. The large-Q? asymptotics is determined by integration
over the region where the coeflicient accompanying 2(pg’) vanishes. Otherwise, the integrand rapidly oscillates
snd the result of integration is exponentially suppressed. Integration over ey ~ 0 region is evidently the simplest
possibility. Other variants are a)y + g + a3 + 04 ~ 0 or as ~ {(a3 + 03 +ay) ~ 0. It is easy to check that the
leading power hehavior is generated by the a; ~ ( integration, which givea

_ _ﬁ o 1 e—|.\(m —16) "
Llpa) = 157 ./o e h—c i dowdeadm +O(1/Q7) 23

where X = a3 + 03 + aq. Introducing the distribution function

00 as g—i(m?—isy
fla)= 16«3 / & (: s u.‘) T dogdaadoy, (2.4)

we can write the leading-power contribution in the parton form:

, _ ) 1 e o
I (P-ﬂ)—‘jﬂ mﬂ’-} z = ./u Wf(t)d==fn ta(zp. g} flz)dz. (2.5)

At the last step, we introduced the parton subprocess amplitude
1

ta(zp,g) = _Z:FT:)’T}: - (2.6)

Hence, the parameter = can be treated as the fraction of the initial momentum p carried by the quark interacting
with the virtual photon. Note that the limits 0 < r < 1 necessary for this interpretation of z are automatically
imposged by the a-representation of f{a). A similat result holds for the u-channel diagram 1&:

” _ 1 e _ 1 22 " 1
T (P-Q)—jl; mﬂf)dlﬂ‘j’] Wﬂﬂ‘“=]ﬂ ti(zp,g) flz) dz . (2.1

The distribution function f{z} is defined here by the same o-parameter integral (2.4). The latter can be easily
calculated to give

2
o) = a1 -ne0<z <) (2.8)

Note, that f(z) ia purely real. Due to singularity at * = { in Eq.(2.4), the total amplitude T = T, + 7} has both
real and imaginary parts. Since z > 0 and ¢ > 0, its imaginary part is given by the s-channel contribution Ta{p, )
caly:

0 1
2pe) ~ Zpe} T

1 ag o _
T 0 = [ im0 )b = [ o be - 0 )tz = -0 29



The real part of T is given by Ty and by the real part of Ty:

ReT2(p )—jlﬁet(: ) flz)dz = LP/AM&: (2.10)
o P [] g T pe) Sy x-( T i
where P stands for the principal value preacription.

To translate these reaults into the OPE language, we write the coniribution of the diagrams la, b in the coordinate
representation:

T(p.q) = j(PN(U)d(Z) )] (e“"‘)+e"‘”]) Dm(z?)dz. (2.11)

The large-G* asymptotica of T(p,q) is given by the leading light-cone behavior of both the quark propagator
Da(z?) = 1/4ix%(z* — §¢) + ... and the matrix element {p| ${0)(z) |p}
e~ia5) 4 piler

)
{pl $(0)(2) [ Liaca d'z + O(1/Q"). (2.12)

4in3(z? — ie)

T.0)= [

Defining the parton distribution function f(z) by

1
{pl #(0)é(2) | p}ls1=0 =./o %(e—i:[p:)_l_cu(w)) f(z)dz, 213
we rederive the parton formutas (2.5}, (2.7). Basically, the integral (2.13) can be treated as a Fourier representation
for the light-cone matrix element {p|$(0)d{z) | p)lsaze = F(pr) which is a function of the only variable (pz).
However, to derive the spectral constraint —1 < z < 1 for the Fourier pattner of (pz) and establish the property
f{z) = f(—x), one should incorporate the fact that f(pz} is given by Feynman integrala with specific analytic
properties and that we have the same scalar field ¢ at both points 0 and z. The a-representation which we used
above is one of the most effective (though perturbative) ways to take these properties into account. In ref. [26}
(see also Section 111 below}, the a-representation was used to prove that the constraint 0 < £ < 1 in Eq.{2.13) and
mimitar {but more complicated) constraints for multiparton distributions and distribution amplitudes hold for any
Feynman diagram. Two other approaches to studying spectral properties of parton distributions are described in
refs. [32,33].

Anticipating comparison with the nonforward distributions discussed below, it is worth emphasizing here that
the Bjorken {-paramecter is not present in Eq.(2.13) defining the parton distribution function f(x). It appears only
after one calculates the Compton amplitude T(p, g).

C. Double distributlons

Now, consider a one-loop box diagram for the scalar analog of the deeply virtual Compton scattering amplitude
(Figa.le,d). Using the same basic light-cone momenta p, " as in the forward case, we write the momentum of
the incoming virtual photon as ¢ = ¢' — (p. The outgeing real photon carriea the lightlike momentum ¢'. The
momentum conservation requires that the final hadron has the momentuin (1 - {)p, i.c., in this kinematics we
have o lightlike momentum transfer r = { p. Since the initial momenta ¢, p sre identical to those of the forward
amplitude, the parameter ¢ coincides with the Bjorken variable n; = Q?/2(pg). In the a-representation, the
contribution of the diagram e ie

2,2 g . , - + , doydocgdaad,
Tipand) =55 [ op i [1or)on 2S00 _ g i} Sudndmadie )

The large-Q* limit is again governed by the small-a; integration which gives

Tdp.q.9) =

ie’g’ fw 1 e-iﬁ{m'—(r)
[

el s, s res R b G S A

In the forward case, the ratio 03/5 was substituted by the variable r which was interpreted then as the fraction of
the initial hadron momentum carried by the active quark. The result expressed by Eq.(2.15) contains also another
ratio az/A. So, let ua introduce the doudle distrsbution

igd [ —iX(mI-ic}
ig o3 az e
= — - - = . 2.16
F(z,y) T ju [ (z P m) § (y o’ u‘) v dozdoadoy (2.16)

Tt is eany to mce that both variables x,y vary between 0 and 1. Furthermore, their sum is also coufined within
these limits: 0 < £ +y < 1. Hence, F(z,p) = #(z + y < 1) F(z,1). Using Eq.(2.18), we write the leading-power
contribution of T.(p, ¢, ¢') in terms of the double distribution:

TP, ¢} = F(z,y)dzdy

L op1 o2

“je /n Hpg Nz + o —C +ir)
[ o2 11 ,

=—-[D -[0 mp(r’y)dzd‘r:jn .[) tfzp+ur.q,¢') Flz.¥)0(z + y < 1)dzdy. (2.17}

The parton subprocess amplitude 2, is given by

E!

T{zptyr4qPHic’ 18

t(ep+yma.¢)=

Hence, the momentum zp + yr of the quark interacting with the virtual photon originates both from the initial
hadron momentum p (term zp) and the momentum transfer {term yr). In a similar way, for the u-channel diagram
1d, we get

R , _ H 1 E’
T (P-q;()—]; '/; mf(z, ) dz dy

141 o2 1 g1
= - —_— = J , 21
jﬂ -/0 P —— T F(z,y}drdy fu jc tadzp+yr. 0.0 ) Flz. )8z + v < 1) dz dy {2.19)

with the same double distribution F{z, y} given by Eq. (2.16}. In the explicit form,

F(z,y) = #0<z+y<y. (2.20)

_9g
16#x2m3?

Again, F(z,y) is purely real. Compating the a-representations for f(z) and F(z,y), we obtain the reduction
formula for the double distribution F(x,y):

Y=z
f., Flz,5)dy = f(z). @21)

Due to the restrictions = > 0,4 > 0, the imaginary part of the total amplitude T' = T, + Ty ie given by the
#-channel contribution alone:

1 7 _l_ 1 1
%6, @ = o [ [ ae ik - OF (e +y < ey

T L pa = 2
= QC(PQ}[., Flz,1-£/(}dz = m/o F(i,vydy = D) (). (2.22)

‘The last forim ia similar to the expression for Im T in the forward case: one should just use the function ®(() instead
of f({). Moreover, the integral defining ®({) locks similar to that appesring in the reduction formula {2.21). Still,
the two integrals are not identical and, in general, ®(¢) # f(¢). Using the explicit form of F(z,y) for our toy
model, we obtain

¢
() = G MO SCS ). (2.23)



The factor (1 —() present in f(() (see Eq.(2.8) ), does not appear here. Note, however, that the difference is small
for small ¢.

in the QPE language, the basic change compared to the forward case is that we should deal now with the
asymmetric matrix element {p — r | $(0)6(2) | p). Our definition of the double distribution F{z,y) corresponds io
the following parametrization

1 1
{p=r18(0)6{2} 1 P}ls3=0 = j; fn % (e""(")-"ﬂ"’ + e‘ﬂP'J-W("’) F(z.y)0(z +y < 1)dz dy. (2.24)

Taking the limit r = 0 in Eq.(2.24) gives the matrix element defining the usual parton distribution function
f{(z}, and we reobtain the reduction formula (2.21). Again, this definition of F{z,y) can be treated as a Fourier
representation for a function of two independent variables (pz) and (rz), with the spectral constrainte z > 0, y > 0,
z-+y = 1 dictated by the analytic structure of the relevant Feynman integrals. An important feature implied by
the representation (2.24) is the absence of the {-dependence in the double distribution F(z,y). The asymmetric
matrix element {2.24), of course, has {-dependence. But it appeats only through the ratio {rz)/(pz) of variables in
the exponential factor. In this treatment, { characterizes the “longitudinal mementum asymmetry™ of the matrix
elements. The fact that for the deeply virtual Compton amplitude T the parameter { coincides with the Bjorken
vatiable 25; = Q?/2(pq) is & specific feature of & particular process. The matrix el t iteelf accumulates a
process-independent information and, hence, has quite » general nature.

‘Thus, despite the fact that the momenta p and r are proportional to each other r = {p, there is a clear distinction
between them, since p and r specify the momentum flow in two different channels. For r = {, the momentum flows
only in the s-channel and the total momentum entering into the compcsite operator vertex is zero. In this case,
the matrix element coincides with the usual distribution function. The partons entering the compaosite vertex then
carry the fractions #; (i = I, 2) of the initial proton momentum. In general, —1 < z; < 1, but when z; is negative,
we should interpret the parton ss going out of the composite vertex and returning to the final hadron. In other
words, z; can be redefined to secure that the integral always runs over the segment 0 < x < 1. In this parton
picture, the spectators take the remsining momentum {1 — r)p. On the other hand, if the total momentum flowing
through the composite vertex is r, the matrix element has the structure of the distribution amplitude in which the
momentum r splits into the fractions yr and {1 — y)r = pr carried by the quark flelds attached to that vertex. In
a combined situation, when both p and r are nonsero, the initial quark has momentum zp + yr, while the final
one carries the momentum zp = jir. Both the initinl active quark and the spectator carry positive fractions of the
lightlike momentum p: 2+ {y for the aclive quark and £ ~ {y = (1 — £ — y) + (1 = {)y for the spectator. However,
the total fraction of the initial momentum p carried by the quark teturning the fraction zp into the hadron matrix
element is given by r — § and it may take both positive and negative values.

D. Asymmetric distribution functions

Since (rz) = {(pz), the variable y appears in eq.(2.24) only in the z + ¥ = X combination, where X can
be treated as the foial fraction of the initial hadron momentum p carried by the active quark. Since { <1and
z+y £ 1, the variable X satisfies a natural constraint 0 € X < 1. Integrating the double distribution F{X —y(,y)
over y gives the sspmmelric distribution function

Ry X/¢
ﬁwkﬂMBOL FM—Kwawusoﬂ FUX - 1, p)dy, (2.25)

where { = 1~ ¢. The basic distinction between the double distribution F (z,y) and the asymmetric distribution
function F¢(X) is that the former is a universal function in the sense that it does not depend on the momentum
asymmetry parameter { while the latier is explicitly labelled by it. Hence, we deal now with a family of asymmetric
distribution functions #(X) whoee shape changes when ( is changed. In our toy model,

92

FlX) = (g

X 1-X
{FB(USXSC)+W6‘(CSX51)}. (2.26)

8

One can see that when { — 0, the limiting curve for F¢(X) repraduces the usual distribution function:
Fe=o (X} = f(X) . (2.21)

In general, this formula also follows directly from the definition of F¢(X} and the reduction formula (2.21) for the
double distribution F(z,y).

The fraction (X — () = X’ of the original hadron momentum p carried by the “returning” parton differs from
X by (¢ X — X' = ([f]. Since X changes from 0 to § and ¢ # 0,1, the fraction X’ can be either positive or
negative, i.e., the asymmetric distribution function has two componenta corresponding to the regiona 1 > X > ¢
and 0 £ X < (. Inthe region X > ¢ {Fig.2a), where the initial parton momentum X p ia larger than the momentam
transfer r = {p, the function F((X) can be treated as a generalization of the usual disttibution function fl#) for
the asymmetric case when the final hadron momentum p’ differs by {p from the initial momentum p. In this case,
Fi(X} describes a parton going out of the hadron with a positive fraction Xp of the original hadron momentum
and then coming back into the hadron with a changed (but still positive} fraction (X — ()p. The parameter
specifies the momentum asymmetry of the matrix etement.

In the region X < ¢ (Fig.2b), the “returning” parton hes a negative fraction (X —¢) of the light-cone momentum
p. Hence, it is more appropriate to treat it as & parton going out of the hadron and propagating along with the
original parton. Writing X as X = Y, we see that both partons tarry now positive fractions ¥{p = ¥Yr and
Yr = (1-Y})r of the momentum transfer r. The asymmetric distribution function in the region X = ¥¢{ < ¢ looks
like a distribution amplitude ¥;(Y) for & $¢-state with the total momentum r = {p:

Y
¥)= [ Fr - 0. (2.28)
In our model,
vl
¥(¥)= :,m, YHO <Y < 1) (2.29)

Both F(z,y) and F¢(X) in our model are purely real. This result is determined, in fact, by general properties
of the definition of the double distribution, Eq.(2.16). Indeed, let us introduce the Feynman parameters 5, by
a; = Afi. After integrating over A, the only possible source of imaginary contributions is the denotinator factor
1/(m? — ic}. However, since m? > 0, this factor is always positive and the integral is purely real. This would
not happen if the initia] “hadron® has a sufficiently large mass M > 2m. In this case, instend of 1/(m? — i)
we would get 1/(—M?*85(1 — fs) + m? — ic) if the final hadron has the same mass M. Then, the denominator is
not positive-definite if M > 2m, and the integral has hoth real and imaginary part. Clearly, the imaginary part
appeara because the initial hadron can decay into ita constituents. If such a possibility is excluded, the double
distributiona F(z.y) and, hence, the asymmetric distribution functiona Fe(X) are purely real.

The usual parton distributions f(z) are often related to imaginary parts, or mete precisely, s- and ti-channel
discontinuities of parton-hadren amplitudes™. Note, that in our approach, the parton distributions are defined by
form-Tactor-type matrix el which depend only on me tum invariants p?, p'?, ¢? irrelevant to such disconti-
nuities (so far we even were setting them to zero). The variable X in our definition just reflects a more complicated
structure of the operator vertex. To ilfustrate this point, we write F¢(X) in the momentum representation {see
Fig.3a)

i §(X — (kM (py')) 4%k
Fe(X)= 3
«(X) mrfw—W+wm—va+mm—w—w+M' (2.30)
“In & recent paper, L. Frankfurt ef ol. [21] discuss alse discontinuities in the context of the di | dietribution
functions.
a



The &(X — (kq')/(pg"))-functicn here corresponds to composite operator (denoted by a blob on Fig 3g). Using
the a-representation, one can take the Gaussian k-integral and obtain a representation similar to Eq.(2.16), which
finally gives cur purely real result (2.26).

It is worth emphasizing that the parion representationa (2.6}, (2.17} snd {2.33) below are valid for the total
Compton amplitude: there is no need to split the latter into its real and imaginary parts in order to define the
parton distribution. To make a parallel with the traditional approach in which the parton distributions are defined
through the discontinuities of parton-hadron amplitudes, let us calculate the k-integral above using the Sudakov
decomposition

k=fp+ng+ky, Apd)=s, (2.31)
which gives
et fa [ dn
70 = ey [ 41 [ i A DR S A O T
(2.32)

Locking at the location of singularities for the s-integral, we immediately see that a nonzerc result is obtained
only when § < X < 1. Furthermore, in the region { £ X < 1, the integral over 5 is given by residue at
n = —(k% — ic}/(1 — X)s, which corresponds to substituting the ordinary propagator —1/{(p — £)? -+ i¢] by the
&{{p —~ k)*}-function for the line with momentum (p — k). In cther words, for { < X < 1, our ene-loop model for
the function F;(X) is totally given by the residue corresponding to the s-channel cut through the parton-hadron
scattering amplitude (see Fig.3b). On the other hand, in the region 0 < X < {, the integral over 7 is given by
residue at p = (k3 + m? —ie}/ Xo, which corresponds to cutting the line with momentum k (see Fig.3c). Such a
cut cannot be related to & or u-chonnel discontinuities '!. In both cases, one can say that #7{X) originates from a
parton-hadron scattering amplitude T = iF whose imaginary part is given by one or another type of discontinuities.
In our treatment, the only important fact is that the amplitude 7 is purely imaginary so that the distribution
function F¢(X) is real. As we have seen above, the function F(X) can be written in several different ways, e.g.,
in the a-representation which can be integrated without taking any residues.
In terme of F; (X}, the virtual Compton amplitude T;;4(p, ¢, ¢’} can be written as

¥}
. . e 1
)= - - — | F{X)dX. 2.

Telp 0.0 2(pq)fu [X—(+s€ X—:(] LX) dx (2:33)
For a real function F¢(X), the imaginaty part of T7{ ;(p, ¢, ¢) is determined by that of the short-distance amplitude
(terms in square brackets). Since F; (X} linearly varnishes as X — 0, the singularity 1/(X — ie) of the u-channel
diagram 1d gives a vanishing imaginary part. As a result, the imaginary part of the whole amplitude is generated
by the 1/{X — ¢ + ir) singularity coming from the s-chznnel dingram le:

1 1 !
?lmi’z(C,Q’) = i(p'_qi.[, (X -} FU(X)dX = g(m) F(£). {2.34)

Henee, the integral $(¢) in Eq.(2.22) is equal to F¢((), i.e., to the asymmetric distribution function F¢(X) taken
at the point X = {. The parameter { appears in F¢() twice: first as the parameter specifying the longitudinal
momentum asymmetry of the matrix element and then as the momentum fraction at which the imaginary part
appears. As one may expect, it appears for X = rp; = (, just like in the forward case. Note, however, that the
momentum (X - ¢)p of the “returning” parton vanishes when X = {. In other words, the imaginary part appears
in & highly asymmetric configuration in which the fraction of the original hadron momentum carried by the second
parton vanishes. Hence, F({) in general differs from the function f((). The latter corresponds to a symmetric

HI am grateful to L. Frankfurt for attracting my sttention to this point and correspondence.
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configuration in which the final parton has momentum equal to that of the initial one. As discussed earlier, in our
toy model f{{)/Fc(C) = FOHMC) =1~ ¢, i.e., F(C) in larger than f(¢), though the difference is small for small
values of €.

The fact that F;{X) vanishes for X = 0 haa a rather general nature. Note, that for small X the function F¢(X)
is given by its X < { component

Xf
FelX)xg = f F(X -5, v)dy. (2.35)

The size of the integration region is propertional to X and, as a result, (X} vanishes like constx X or faster for
any double distribution F(z, 1} which is finite for small z and y.
In the coordinate representation, the ssymmetric distribution function can be defined through the matrix element

{7 16(0)6(2) | P)lsaz0 = L ' 3 (eten) 4 =000} F(X)ax, {2.36)

with ¢ = 1~ (p'#}/(pz). To re-obtain the relation between F(X) and the double distribution function F(z, y), one
should combine this definition with Eq.{2.24). The ¢ — 0 reduction formula {2.27} trivially follows from Eq.(2.36).
Using translation invariance, we can write representation for a more general light-cone operator:

1
{?' | #(ur)d{vz) | p)loazo = / % (e—inA(_Pl)"'i(x-‘)ll(_Pl) + e—-‘Xu(PlHi(X-()vtpl)) F(X)dX. (2:37)

This formula explicitly shows that if the parton corresponding to ¢{vz} has momentum X, p. then the momentum
of the parton related to ¢(uz) is (X — {)p and vice versa,

E. Nonforward distributlons

Writing the momentum of the virtual photon aa g = ¢’ — (p is equivalent o using the Sudakov decomposition in
the light-cone “plus* {p} and “minus” (§*) components in & situation when there is no transverse momentum. An
essentia) advantage of expressing the amplitndes in the a-representation is that it explicitly shows the dependence
of the diagram on the relevant momentum invariants. This means that we can derive the parton picture both for
zero and non-zero invariant momentutmn transfers £ = (p' — p)* without bothering about an optimal choice of the
basic vectors for the external momenta. Maintaining for simplicity p* = p = 0, we get for the diagram lc

elg? [ Fon{2(pg)os — @3 {as + @4)} + tezang dajdagzdagday
N9 - — 2.38
Tilp.q.q4) 161!'“,/0 exp {’-[ a1 Fort 6ot oa —A(m? —ie) {2.38)
The small-o; integration then gives
ie2g2 HagagfA—ii{mi—ic) devadorad
' g € rofradirg 4
) =— * +0(1 . 2.39
g ') wrg A 2(w)(as/A—c(1—n:/A)+ie) 5 (1/@% (2.39)
where ( = Q?/2(pg) = z5;. Hence, introducing the t-dependent double distribution
o7 - R i i) daadagde.
_ - itga g fA—il(m i) GEAAZACY
Flz.pl) = 16 =z / 6(= a,/.\)a(y aafi} e S (2.40)

we obtain the same parton formula, but with a modified parton distribution F{z, ;1)

1 1 c]
ad o = e e — . . 24'
a0 jo .[u Apg)(z + € — ¢ +ie) Flz.yis)dzdy (241)

Moreover, the dependence on { appears only through the t-dependence of F(z, ;1) Similarly, we can write down
the a-representation for the u-channel diagram 1d:

11



2.3 20 > a
nN=_%92 Je(-2pg)es — QPloat og)) Htapey, 5 } doydendasday
Tip.q.¢') = T jo exp {: [ PR ——— A(m? — e 3z . (2.4
Using 2{pq¢’) = 2pg) + ¢ and integrating over small a; givea the parton formula
. , [ &
T (ped)= j j -
FEaD=J L GET R A0
with the same ¢-dependent function F{«,y;¢). In our model,
@ 8(0gz+pgl)
1642 m? —tp(l —z— )’

Flz,pit)drdy (2.4%)

Flz, yii)= {2.44)
The parton mubptocess amplitude in this case has the O(2/2(pg)) = O{(t/Q?) correction term which can be
neglected in the large-Q?, fixed-t limit. Then the parton amplitude again depends only on the combination z + y(,
and it makes sense to introduce the ronforward disiribution
min ( X/, X /()
wxin = [ F(X = . it} dy. (245)
o

which can be treated as the finite-t generalization of the asymmetric distribution function F¢(X) (or more precisely,
F:(X) is the t = 0 idealization of F(X:1)). In our simple model, it can be catculated snalytically

2
r;(x;f)=lgt,{:;$(>_¢}1 {r+vT¥7) +a(x<¢)f _—tw.(—m} (2.46)

where 1 = \/(—t/4m?){1 — X}/{1 — {). The function F¢(X; ) falls off with increasing |t like a form factor.

The {-dependent distributions F(z,y;t) and F¢(X;t) in our model are purely real. Indeed, introducing again
the Feynman parameters J; by a; = Ag; and integrating over b gives the denominator factor 1/( 284+ m? —ie).
However, since { < 0, this factor in always positive and the integral is purely real. Imaginary part for F(z, y;t) and
Fe{X;1) would appear only if the initial hadron mass satisfies M7 > dm3,

For real distributions, the imaginary part of the total Compton amplitude can be calculated by taking the
imaginary part of the short-distance amplitude which picks out the function F¢({;1)

N [
FlGit) = g (T+ V4T, 247

where T = +/{—t/4m3)(1 — ().
In the OPE approach, the nonforward distribution is given by the matrix element

{1 (0} (z) [ pHles=o = fn ' % (e""“r') + e"("-ﬂﬁ")) F(X;t)dX. (2.48)
Taking the local limit z = 0, we obtain the following sum rula for F¢(X;1)
[ mxiax = wisoso1n = FO, (249)
where F(t} ie the toy model analog of a hadronic form factor.
III. ALL-ORDER ANALYSIS
A. Handbag dlagram to all orders

Using the a-representation, one can write down the contribution of any diagram in terms of funciions of the
a-parameters specified by the atructure of the diagram. Since the object of our interest is the matrix element of
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a two-body operator, we can extract it from the simplest handbag diagrams, i.e., those in which the g vertex is
connected to the ¢ vertex by a single propagator. The contribution of any diagram of this type can be written as
{see, e.g., [27,30])
Plee) _
i it afa
T90.0.4) = s [ L doeD™)

exp {,.q,m;(a) saiAe) o aidi(a)

Py e e v } G
where & = (p+ ¢)",u = {p — ¢’} and £ = {p ~ p)* are the Mandelstam variables, 4 is the space-time dimension,
Pc.c.) is the relevant product of the coupling constants, z is the number of loops of the diagram and { is the
number of its internal lines. Fioally, I, A,, A,, A,, AL are funciions of the a-parameters uniquely determined for
each diagram.

To describe them, we need definitions of & tree and & 2-tree of » graph. A tree (2-tree) of a graph G is a
subgraph of G which consists of one {two) connected components each of which has no loops. Any tree G¥ (2-
tree &) of G is determined by the set of lines & which should be removed from the initial graph & to produce
G¥ (GY). The product of the a,-parameters associated with these lines will be referred to as a-tree {a-2-tree).
The funetion D(a) is called the determinant of the graph. It is given by the sum of all o-trees of the graph G.
By B(i1,....imlf1, - ... ja) we denote the sum of all a-2-trees possessing the property that the vertices iy,... 4y
belong to one component, ji,..., f, to the other, while the vertices not indicated explicitly may belong to either
component. In these notationa,

ai1dc(e) = Blglp. ¢, F') odu(o) = Bl plf' . F'); o1Au(a) = Blg,P'lp. o) Ada) = Blg,q'lp.p}.  (3.2)

The mnemonice is straightforward: the square of the total momentum entering into one of the components (due to
momentum conservation, it does not matter which one) just gives the relevant momentum invariant (see Fig.4). To
get all the 2-trees corresponding to this invariant, one should make all possible cuts resulting in such a separation
of external momenta, Note, that o) must be present in all terms of B(qlp.¢,p"), B(q,pl¢’,p') and B(q,plp.q’)
betause the verticea g, ¢ in these cases belong to different components. On the other hand, for B(q, ¢'|p.p’) these
vertices are in the same component. As a result, there are terms in Ay{e) which do not contain o; as a factor,
i, Ai(a) = 014 (@) + AL a) with A%(a} # 0 and A{(a) # 0 for ¢y = 0. Similarly, the function D(a) can
be writien as D{a) = ayDi(a) + Ds(a), where Di{a) is the determinant for the graph G obtained from G by
deleting the line oy, while Dy(a) ia that for the graph Gy resulting from G by contracting the line o into a point
(and gluing the vertices g, ¢’ into a singls point). One can sese that the function Dy{a) can aleo be wrilten in terms
of the same o-2-trees:

Dola) = {B(glp. o, p) + Blq,pl¢’.6) + Bla.¢lp. ') + Bla.p, 7'l¢")) /oy
= Ap(a)+ A,(a) + Au(a) + Agr(a), (X))

whete Ag(a) is the function corresponding to the cut separating out the momentum inveriant ¢, To get the
leading large-Q? asymptotics, we integrate over the region a; ~ 0. This gives

-1

. _ Plce) _ap, [ 2ALle) | Ae) | Aue) A .
T a)= Z-’*‘(m),,,,f I[ da-0 (n)[ 7 Dota) T *Dule) * “Bofa) T Bt~ t

{0)
xexp{ tA (a) —i Za,(m, - I.G)} (3.4)

Using 5 = —Q* + 2{pg),u = —2(pqg) +t and neglecting ¢ and m? compared to ((Q?)} terms in the denominator
factor, we transform it into

Ae) — Aula}

1 AL(a) + As(a)
@ Dofa)

Dyfa)

+ 2(pq)
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This expression has the structure similar to that of the one-loop contributions {2.39),(2.42). In particular, it can
be converted into the form of the s-channel term (2.39) if we denote [A,(a) — Au{e)]/Do{a) by z and [Ar{a) +
A,(@)]/Do(a) by 1 — . Analogously, to make it look like the u-channel term (2.42), we should take [A,{a) —
Auf{a)}/Dofa) = —z and [Ag(a) + A,(2))/Do{a) = y. I we want to have positive 2, we should perform the first
identifleation in the region where A,(a) > A,(a) and use the second one in the region where A,{x} < Ay(a). In
other words, we define the ¢-dependent double distribution by

) = g-1 Plee) % ry—df2 [ A%« . T
F(z, 5 )_mz.;r_ -—(4“.)“,,-/; ‘]_:I_zdu,uu (a)exp'lui Dala) —lgzﬂn.,(m,,—u)
Ar(a) + 4, oo} — Au
[" (' Ty L(S(Ia) (a)) s (” -2 (a})o(:; (a)) B (o) > Aule))

+46 (y— ""'(‘30'(*&’;'(")) § (z - A“(‘guzo’)l‘ (")) #(A, (a) < A..(ur))] ) (3.5)

An intuitive interpretation is that when A,(a) > A.(a), the quark fakes the momentum xp from the initial
hadron. Its total momentum is zp + pr. Alternatively, when A,{a) < Au(a), the quark refurns the momentum
zp to the final state, and ita total returning momentum ia zp — (1 — yjr. Due to Eq.(3.3), we automatically
have 0 € 2 £ 1,0 < y < 1. Furthermore, since = + y = [Ar{e) + Au(a)]/Do{a) < 1 in the first region and
z+y = [Ag(a) + A,(«)]/Dofer) £ 1 in the second one, we always have the restriction =z +y < 1.

Again, introducing the Feynman parameters §; = oy/A and the common acale A given by the sum of all a,-
parameters, we can integrate over A to see that the resulting denominator factor 1/(—tAf")(a)/Do(a) +m?) is
positive for £ < 0, and the double distribution is purely real.

The same definition of the parameters z,y based on the o-representation can be used in the realistic case of
spin-% quarks. However, one should take into account that the quark lines in that case are oriented. Depending
on their direction, we should interpret the parton with momentum zp + yr either as & quark or as an antiquark.

The nonforward distributions ¥;(X;?) can be obtained from the double distributions using Eq.(2.45). The
restrictions z,y > 0, z + y < 1 guarantee that the total fraction X satisfies the basic comstraint § < X < 1.

Furthermore, if the double distribution F(z, ;) is finite for all relevant £, p, the nonforward distribution F¢(X;t)
vanishes (at least Jinearly) as X — 0.

B. Alpha-representation and factorizatlon

Using the a-representation, we can write each perturbative diagram contributing to the virtnal Compton acat-
tering amplitude T(p, ¢, ¢’} in any field theory model, including QCD (see Fig.5)

Tp.0.¢) = if%%%,’*; fu I dee b~%%(a) Gla.p,4,9" )
2 Br{o)+ By(a) .. . Bfa)— B.(a}
exp {"-Qz Da) + 2i(pg) Dia) }
exp {:‘: B.(ai)-:-ai)?u(u) +iM? Bl(a;)-:-a;i:(a) —iY . agfm? - ic)} . (3.6)

The only difference is the presence of the preexponential factor G(a,p, ¢, ¢; my) due to the numerator structure of
the QCD propagators and vertices. It has a polynomial dependence on the momentum invariants. The functions
B(e) are defined by the relevant 2-trees, e.g., Br(a) = Blglp, ¢, p'), ete.

In the region where @ and 2(pg) = {Q® are large, all the contributions having a power-like behavior on Q?
can only come from the integration region inside which all the ratios Ay /D, A, /D, Au/ D vanish: if any of them is
larger than some constent g, the integrand rapidly oscillates and the resulting contribution from such an integration
region is exponentially suppressed.
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Since Az, A,, Ay and IJ are given by sums of products of non-uegative a-parameters, there are two basic pos-
sibilities to arrange A¢/Dr = 0. In the first case, called the “short-distance regime”, A; vanishes faster than D
when some of the o-parameters tend to zero (small a correspend to large virtualities k2, i.e., to “short” distances).
The second possibility, called the “infrared regime”, occurs if I goes to infinity faster than A; when some of the
a-parameters tend to infinity (large a correspond to smali momenta k, i.c., to the infrared limit). One can also
imagine & combined regime, when A;/D = 0 because some a-parameters vanish and some are infinite.

There exists a simple rule using which one can easily find the lines ¢ whose o-parameters must be set to zero
and those whose a-parameters must be taken infinite to nssure that A;/D = 0. First, one should realize that
Aif D = 0 meena that the corresponding diagram of & scelar theory (in which G = 1} has no dependence on the
relevant monenium invariant (7, s or u in our case). As the second step, one should incorporate the well-known
analogy between the Feynman diagrams and electric circuits [34]: the or,-parameters may be interpreted as the
resistances of the corresponding lines o. In other words, &, = 0 corresponds to short-circuiting the line o while
@, = 0a corresponds to ite removal from the diagram. Hence, the problem is to find the sets of lines {¢}sp, {c}a
whose contraction inte point (for {¢}sp) or removal from the diagram (for {o}1a) produces the diagram whitch in
a scaiar theory does not depend on p?. Thus, the rule determining possible types of the powetlike contributions is
the following: if the part of the diagram corresponding to a shori-distance subprocess is contracted into a point and
the part corresponding to soft exchange is removed from the diagram, the resulting disgram {“reduced diagram”,
«f. [35,16}) should have no dependence on large momentum invariants.

Some examples are shown in Fig 6. The simplest possibility is to contract into point some subraph H containing
the photon vertices g, ¢' (Fig.6a). The reduced diagram depends enly on small invariants {, M 7 and masses m. The
long-distance part corresponds to a nonforward distribution. This is the standard OPE configuration. However,
since ¢"? is not & large momentum invariant: g'? = 0, there is a less trivial possibility shown in Fig.6b. In this case,
there are iwo long-distance parts: one i given by a nonforward disttibution again and the other can be interpreted
a3 the distribution amplitude (hadronic component) of a real photon. Exchange of soft quanta between the two
long-distance parta of Fig.6b corresponds to a combined SD-IR regime (Fig.6c): the a-parameters of lines inside
H vanish while those belonging to the soft subgraph 5 tend to infinity.

One can easily invent other, more complicated configurations. Fortunately, not all of themn are equally important:
different configurations have different @*-behavior. The power counting is based on the observation that in the
essential region of integration a, ~ 1/@* for lines in the short-distance subgraph H and oy ~ Q2/p* for lines
in the soft subgraph § (p? is some generic small scale, soy, M2 or m®). In the momentum representation, this
corresponds to k ~ @ for the H-lines and k ~ p?/@ for the S-lines. As a result, in a theory with dimensionless
coupling constants, we can use the dimensional analysis to derive that the contribution due to H behaves like
*~4n where dy is the sum of dimensions (in mass units) of the fields associated with the external lines of H. We
should also take into account extra numerator factors bronght by these external lines. For instance, each external
quark line adds & Dirac spinor u(p), two of them give u(p)i(p) ~ #, snd j can combine with ¢ from H to give
(pg) ~ Q*. This means that each external quark line can bring an extra @Q'/? factor. Note, that 1/2 is the spin of
the quark. Similarly, an external ghion line can add s p* factor. Combined with g, from H it gives (pg) ~ Q*,
i.e., the gluon line can bring an extra @ = @' factor for the whole amplitude. Again, “1” is the spin of the gluon.
Hence, each external quark or gluon line can give the factor Q- = =" where ; = d; — #; is its twiat. Note
also that caleulating the virtual Compton ampitude we do not convolute the vector indices 4, ¥ of the initial and
final photon lines with momentum-dependent vectors. Hence, each external photon line gives only the factor Q!
due to its dimension. Thus, the counting rule for the contribution of the hard subgraph i 1s

ta(Q) S QN 37

where N is the number of external photon lines of the hard subgraph and summation is over quark and gluon
external tines of H. For the simplest hard subgraph with two external quark lines this gives 1(Q) < @°, a sealing
behavior as expected, For the configuration 6b, the estimate is ty(Q) < Q1. Hence, the contribution of Fig.6b
is power-suppressed compated to that of Fig.o. Note that since the gluons heve zero twist, the hard subgraph
can have an arbitrary number of extra gluon lines without changing its power behavior. A similar power counting
estimate [38] based on k ~ p?/Q can be obtained for the soft subgraph S:
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(@ £ Q5 (38)

where the summation is over the external lines of 5. Hence, exchanging a soft quark {Fig.6d) produces the 1/Q?
suppression (S has then two external quark lines each having ¢ = 1), while the exchange of any number of soft gluons
is not necessarily accompanied by a suppression factor, at least on diagram by diagram level {for more details, see
discussion in the next subsection). For the combined SD-IR configuration, the power counting estimate is

tus(Q) S QU-N-TutigEstr, 3.9

It is convenient to describe the power-low bebavior of T{Q7) in terms of the Mellin transformation

T = 5-1;‘- f (%)J ®(1)dJ. (3.10)
=-foo

Then the statement that T{QT) ~ (1/(%)" is equivalent to saying that the Mellin transform ®(JS) has a pole at
J = —n. Take as an example the Mellin transform of the scalar diagram shown in Fig.7a (it is essentially identical
to the diagram 1c):

(aa o) - o f(
nl +oagtoatoay

0D = ]61"

. ) . daydazdesdoy
] exp {itoaoa/A — ik (m? - ic)} m .

(3.11)

Small-a; integration corresponds to the simplest $O-regime 65 and generates the pole 1/(J + 1) cortesponding to
the 1/(? asymptotic behavior. The relevant reduced graph is shown in Fig. 7,

Another posaibility to kill the dependence on large variables is to take aa = a4 = 0 which corresponds to the
reduced graph shown in Fig.7c. To describe a simulianecus vanishing of two a-parameters, we use the common
tcale p = a3 + a4 and the Feynman parameters v; = ay/p. The resulting p-integral o7 pdp gives the pole 1/(J +2)
corresponding to a non-leading behavior 1/Q4.

Furthermore, contracting the whole diagram into point (i.e. taking a; = 0 for all a-parameters} we also obtain
» reduced graph which does not depend on large variables. In this case, we introduce the common scale A =
oy + &g + aa + a4 and the relative parameters §; = o;/A. In d = 4 dimensions, the integrand behaves like
37 A3d2/3? which produces the pole 1/(J + 2) generating & non-leading behavior 1/Q*. However, if we take a
acalar model in d = § space-tima dimensions, then the integrand behaves like A7 X3dX/A% and small-} integration
generates the leading pole 1/(J+1). Note that in thia case after the A-integration we still have the factor B{ capable
of producing another 1/{J + 1) pole due to small- integration. Hence, the total singularity of this diagram in &
dimensions is 1/{J +1)?, which gives T(@?) ~ {In @*)/@?. This corresponds, of course, to the scaling viclation i.e.,
to evolution of the nonforward distribul.ion One can even extract the relevant evolution kernel from the remaining
integral over 3,83, A4 = 1 — B2 — Sy (the reault, in fact, can be read off Eq.(2.26) ). Another observation is that
if we simply integrate over small-ay region, the remaining integral doydaadoy /A3 logarithmically diverges in the
region of emall X = ey + o3 + g, Thin is the standard UV divergence of a matrix element of a light-cone eperator
in a theory with dimensioniess coupling constanta.

Taking ey — 00, we incorporate the I R regime corresponding to the reduced graph 7d. If the quark corresponding
to the o3 line is massless, the oy Integral in this limit is &3 T¥daafed. It produces the 1/(J + 1) pole corresponding
to the leading 1/Q? behavior. In the previous section, we did not see this contribution because the quark masses
were assumed to be nonzero for all the lines. For nonzero mass, the factor exp[~iegm?] suppresses the large-ay
integration and no poles in the J-plane are produced. In other worda, the IR regime should be taken into account
only for leas (or nearly massless) fields. Note, that in QCD the IR regime for the virtual Compton amplitude
also gives 1/Q* behavior for massless quarks (see Eq.(3.8) ). However, in QCD this is a non-leading contribution
compared to the scaling behavior produced by the purely SD regime 75b.
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C. QCD and gauge invariance

After the SD-dominance is established, the next step s to write the contribution of the SI configuration in the
coordinate representation (Fig.Ba)

T(p.9.4") :fﬂ"""ri‘lf{p'Ioi(z:)C(z,n.zz)d(n)Ip) dz dz, (3.12)

(where ¢ is & generic notation for the quark fields ¥, ¥ and the gluon field A) and expand the bilocal matrix element
{r 19(2) ... #(£:1)1p} in powers of (z; — z,)%. Since we already know from the a-representation analysis that the
virtualities inside the SD-subgraph are O(Q"), extra powers of (zz — z;)? for simply dimensional reasons result
in extra powers of 1/Q%, and the leading large-G? behavior will be given by the lowest term of this expansion
corresponding to the lowest-twist composite operator. Parametrizing the nonforward matrix elements of the light-
cone operators by formulaa analogous to Eq.(2.37) gives the parton formulas similar to Eq.{2.33). Of course, this
i# just & general ides how to obtain the QCD parton picture for the SD-dominated amplitudes. Its practical
implementation depends co specific properties of a particular process under consideration.

The most important complication in QCD is due to the gauge nature of the gluonic field. In Feynman gauge, the
gluon vector potential A, has zero twist, and we should perform an infinite summation over the extetnal gluomc
lines both for the $D-subgraphs H and infrared subgraphs §. Consider the sum of gluon insertions into the quark
propagator. It is well-known (see, e.g., [36-39]) that after summation

SE-m+ jS‘(E — I gANNS (2 — ) d's + ... = E(€,m; A} SE(€ — )1+ O(G)] (3.13)

all the A-fields can be accumulated in the path-ordered exponential

] .
E{¢,mA)= Pexp (igj A,,(z)dz"‘) {3.14)
n

while O(G) term depends on the gluonic fields only through the tensor G, and its covariant derivatives. Since
Gy ip asymmetric with respect to the interchange of the indicea p, v, it should be treated as a twist-1 field. For
the simplest SD configuration possessing a single long-distance part, combining the E-factors of all internal lines
of the §D-subgraph, one gets gauge-invariant operators, e.g., §(z1 )7, E(x, 22; A)g{#3).

If the loweat-order §D-configuration contains two long-distance parts (like in Fig.6b), the gluonic corrections in-
clude insertions into the external lines of the SI subgraph 86. The resulting path-ordered exponentials £, {£, co; A)
then go Lo infinity along the relevant light-cone divections, e.g., ¢° or p in case of hard electroproduction procesaes.
However, for color-singlet channels there are at least two such exponentisle and their long-distance tails cancel
each other so that only the factors E(£, n; A) related to SD-subgraph vertices £, remain. The basic effect of the
exponential factor £(£, n; A) is that expanding operators O£, 5) inta the Taylor series, ¢.g..

HE EEm A = 3 AMAY L AGEN D Dy - Donall) i A=n-§ (3.15)

n=0

one gets local operators §y. Dy, D, ... D, _q containing covariant derivatives D* = & — igA* rather than ordinary
ones.

The cancellation of En(£, oo; A) factors is very important for the success of the standard factorization program.
Only after such a cancellation, the long-distance information is accumulated in universal matrix elements of gauge
invariant light-cone operators. To illustrate the difference betwesn a tolor-singlet and a non-color singlet channel,
consider matrix element J(p,¢') = (0|E¢ (0, 00; A)(0)p} of the quark field ¢(0} coming out of a state with
momentumn p and taken together with the accompanying gluonic field A which is then absorbed by a ¢" channel

quark collecting the gluonic A-fields into the E(0,00; A) factor (see Fig.Bc). Note that the latter can be written
as



oo oo oo t
Ey(0,00) = Pexp (/ A(t)dt) = 1+f Aft) dt +[ A(t)dtj Altr)dty + ...
o 0 o ]
ol
= 1+/ A(8) Eg (0, 1) dt (3.16)
o
where A(t) = igq), A*(f¢). Substituting this result into the matrix element
o0
Jip.¢") = {01{0)ip) + J[ {0 A(t}E, (G, 1)(0) [p} dt , (3.17)
o
shifting the arguments of all fields in the second term by {¢' and performing the Taylor expansion
s~ (="
Eg{~1,006(~tg') = 3, (¢’ D)"¥(0) (3.18)
]
we tan take the integral over ¢ to get
, hacd g0+ -
Hp.g') = (0lvlp) - Y oy AL Dbl (3.19)
n=0
where all the fields are taken at the origin. In fact, since

0|4y Dy, ... Dv ¥ip) = pups, - - -PV.“n(F’) , (3.20)

the rhe of Eq.(3.19) does not depend on (pg') (cf. [40}). Note, that the new representation for J(p, ¢}, unlike the
original one, is not explicitly gauge invariant. However, the ¢-term can be represented as

@'d)
0 ={0 321
{Ol¢lp} = {0li—= (p ,)wip) (321
and we can combine it with the first term from the sum to get a term containing a covariant derivative D = 9—igA:
(¢'D) o i .
Jp.¢)=1{0 - — ™ .
(2 d) = {0li—- ) “—~ Vi ;:l: PP (A (2" D)) (3.22)

Repeating this trick, i.e., representing the term outside the sum as

ok B vte) = 0p LTy (3.3)
and combining this term with the n = 1 term from the sum one obtains
o © il
st = 01 X o) = Y o LA DY ). {8.24)
g} L (p1)
1t is clear now that we can write J(p,¢’) in a manifestly gauge-invariant form (cf. [41]):
nulo) = for { 5 D))
J(p.q) = l Ol(q" = {0 . 2
(p.0)= Jim oo oy iph = 0 (22wt (325)

In perturbation theory, matrix elements {0j(¢'D)"4|p} for finite n have ultraviolet divergences which can be reg-
utated in & standard way, e.g., by the dimensional regularization. After renormalization, we get one-loop terms
like g™y, log 22 However, the anomalous dimension 7, contains the usuval (E;' 1/} term [22] which behaves like
logn for large n. Hente, taking the formal limit R — oo one encounters a logarithmic singularity, which requirea
an additional regularization on top of dimensional regnlarization (cf. {42]). The parameter characterizing the extea
regularization can be taken proportional to g, i.¢., matrix element {0FE,(0, co; AW{(0)|p) is the simplest example
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of a long-distance object with a double-logarithmic dependence on the UV cut-off [43]. Such objects {“collinear” or
“jet” factors [44,40,45]) play an important role in pQCD studies of Sudakov effects. However, within the st.andnrd

factorization approach, presence of non-cancelling double logarithms of Q? (reflected by double logarithms log* u

in long-distance matrix efements) is trealed as a failure of the factorization program, since the amplitudes in that

case are not given by a convolution of parton distributions defined through matrix elements of light-cone operators.
Another signature of Sudakov effects is the presence of the IR contributions (see Fig.6c). Again, since all the

hadrona participating in & hard exclusive scattering process are color singlets, summingover all soft gluon insertions

one would get a path-ordered exponential over a closed contour, and by Stokes theorem

P exp {ig § Auts)as” } Io} = 1+ (|O(G)) (3.26)

where O(G) depends on the gluon field only through the field strength tensor G,, which has non-zero twist
generating a power suppression of the net 1R regime contribution.

1IV. NONFORWARD DISTRIBUTIONS IN QCD
A. CQuark distributions.

Let us discuss now the nonforward parton distributions in the realistic QCD case. For quarks, we should take
into account that the field ¢:{z) contains both the g-quark annihilation operator and the &-antiquark creation
operator, i.e., the matrix element of the same light-cone operatot $a(2)...¥4(0) determines distribution functions
both for the quark and antiquark. Another complication is related to spin. There are two leading-twist operators
Fal0)y, E(0, £; A)a(z) and $5{0) 757, E(0, 7; A)¥a(z), where, as discussed above, E(D,z;A) is the path-ordered
exponential (3.14) which makes the operators gauge-invariant. In the forward case, the first one gives the spin-
averaged diatribution functions f{z) while the second one is related to the spin-dependent structure functions gi(x).
In this paper, we will concentrate on the Y7, E(0, z; AW, operators and gluenic operators with which it mixes
under renormalization. The relevant nonforward matrix element can be written ash?

(9,21 Ba0VEEAO, 2 Abal) 1, )1ms (a1)
1

= #hintpa) [ (FODFLG - EXOIEX ) ax
[+

so oz 1
+&(p, 5') i - ”u(p. 8) f (e"x(“)x.?(.\’;t] _ ﬂi(x‘(](Pchg(X; t)) X,
2M A
where M is the nucleon mass and s, s’ specify the nucleon polarization. Throughout the paper, we use the “hat”
(rather than “glash”} convention # = zMv,. In Eq.(4.1), the quark and antiquark contributions are explicitly
separated. The expanential ¢~ ¥} aasociated with the functions FZ{X;t) and K7(X:1) indicates that the field

¥5{z) corresponds to the a-quark taking the momentum Xp from the nucleon. When the momentum Xp is taken
from the nucleon by an a-antiquark, the corresponding annihilation opetator is it ¥a(0), and the functions F2(X;t)
and K£3(X;t) ate sccompanied by the exponentinl ¢#X ~<¥Pt} corresponding to the momentum at the ¢,(2)-vertex.
The antiquark terms coms with the minus sign because the creation and anmihilation operators for them appear
in the reversed order.

Ag emphasized by X. Ji [11], the parametrization of this nonforward matrix element must.include both the
non-flip term described by the functions F¢(X;1) and the spin-flip term’¥ characterized by the functions which we
denote by X (X;t). Taking the O(z) term of the Taylor expansion gives the sum rules [11]

'Twa other definitions of the nonforward parton distributions in terms of matrix elements of composite operators proposed
by X.Ji [11] and Collins, Frankfurt and Strikman [16] are discussed in Section 1X.
W The possibility of a spin-flip in nonforward matrix elements was discussed earfier in refs. [46,47].
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1
jo [Frexiny - FHX:0) dX = 2, {4.2)
3
j; [Cax:0 - K2 (X; 1)) X = FP(D) {4.3)

relating the nonforward distributions F7(X;¢t), Kg(X;t) to the o-flavor components of the Dirac and Pauli form
factors, respectively {see also [47) and [48]). The spin-flip terms disappear only if = 0. In the weaker r’ =t =0
timit, they survive, e.g., F§(0) = x° ia the g-flavor contribution to the anomalous magnetic moment. In the formal
t = 0 lLimit, the nonforward distributions F2(X:t), K2(X:t) reduce to the asymmetric distribution functions
FHX), LF(X). 1t is worth mentioning here that for a massive target (nucleons in our case) there is a kinematic
restriction {9]

~tZ{IMYC (44)

Hence, for fixed ¢, the formal limit ¢ — 0 is not physically reachable. However, many results (evolution equations
being the most important example) obtained in the formal ¢ = 0, M = 0 limit are still applicable.

in the region X > (, the initial quark momentum Xp is larger than the momentum transfer r = {p, and we
can treat F¢(X) as a generslization of the usual distribution function fu(z). When ¢ — 0, the limiting curve for
Fe(X) reproduces f,(X}:

FeaX) = fulX) § FizplX) = fa(X). (4.5)

The spin-fiip asymmetric distribution functions K¢ (X) do not neceasarily vanish in the { — 0 limit. However,
the relevant nucleon matrix element &(p')(zf — F#)u(p) is proportional to { and the spin-flip term ia tnvisible in
the forward case.

In the region X < {, one can define ¥ = X/( and treat the function F{(X) as the distribution amplitude ¥¢(¥').
In particular, the non-fip part it this region can be wittten as

L 1
¢ u(z)iuir) j e R Yy - e OTWEECYY] @Y = Catpintp) j eTEIRYYY, (46)
0 [
where the distribution amplitude !I"‘!(Y) is defined by
¥E(Y) = FLYQ) - FVO). 7

The function WE(Y) gives the probability amplitude that the initial nucleon with momentum p is composed of the
final nucleon with momentam (1 — ()p = p — r and a g-pair in which the total pair momentum r is shared in
feactions ¥ and 1 -V =7

B. Gluon Distribution

For gluons, the nonforward distribution can be defined through the matrix element
(' | 2,2, GRL (0) B0, z; A)GL,(z) 1PMsazo (4.8)
1
= tp)iutphe-p) [ g [+ %-000)] F( g ax
]

£ -

f Y1 :
. 2 [ameXlps) 4 HX-Ops)| ot x.
(o) _u)]u <[ +e |kt ax.

+a(p')

The exponentials e~ () and £HX - are gecompanied here by the same function FEHX;1) reflecting the fact
that gluon and “antigluon” is the same thing. Again, the contribution from the region 0 < X < { can be written
as
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1
i(pYiu(p)(z - r) f e~t¥irn) VY1) dY + “K" term, (4.9)
o
with the generalized ¥ — ¥ aymmetric distribution amplitude \FE(Y;!) given by
1 _
w(vin = g (FYG + FTGn) (4.10)

In the formal t = 0 limit, the nonforward distributions F(X:t), KI{X;t) convert into the asymmetric distribution
functions F#(X), £{(X). Finally, in the { = 0 limit, F/{X} reduces to the usual gluon density

FiolX) = X fo(X) (410

C. Flavor-singlet and valence quark distributions

In our original definition (4.1} of the quark distributions, the exponentials exp[—iX(ps)) and exp[i{ X — ()(pz)]
are accompanied by different functions F£{X;t) and FJ{X;1)), repectively. In many cases, it is convenient to
introduce the flavor-singlet quark operator

Oq(uz,vs) = Y O (uz, v2) (1.12)
where ’
O uz, vr) = ;-'[@.(uz)s:-:(u;, v2; Apba{vz) = Pa(va)e Elvz, uz; A]iﬁﬂ(uz)] . “.13)
The nonforward distribution function }'? (X ;1) for the flavor-singlet quark combination (4.12)

1.
{¢, 8| Ogluz, vz} |p. 8)],a=p = W(p', a')iu(p.a)ﬂ % [e""’m")‘”“x‘[?') - c"'x'(-'"]""x(")] }'?(X;t) dX + K"

4.14
(where X' = X — () can be expressed as the sum of “a 4+ &” distributions: e
FAX ey =Y (FX 0+ FAX). {4.15)

Writing the contribution from the 0 < X < ¢ re;ion L]
Ca(p)zu(p) (£ r) jo ' e VPR (V) Y + 4K term, (4.16)

we introduce the flavor-singlet quark dietribution amplitude !i?(Y;t} which has the antisymmetry property
‘P?(Y;!) = —\I‘?(?;!) with respect to the Y « ¥ transformation.
Another combination of quark operatars

O Nz, vz) = % Y [@,(u:)iE(u:, vz; Ala(vz) + Yo (ve)E E(vz, vz; A)'ﬁﬂ(uz)] (417}
4
cotresponds to the valence combinations f(v' (X:8) = F2(Xit) - FHX )
1
(7, #1057 (uz, vz} p. bl iamo = ﬁ(p'.a')iu(p,s)] % [emiv XX (per . X ar—tuXien] £, 1ydX 4 K.
]

(4.18)
In both cases (see Eqe.{4.14),{4.18) ), two possible exponential factors are accompanied by the same distribution
function, just like for the gluon distribution. In the region 0 < X < {, the fanction Fc‘"(X;l) can be written
in terms of the flavor-nonsinglet distribution amplitide \Irr‘(}’; t} which is symmetric W}"(Y;!) = \Il:"(}_';t) with
respect o the ¥ «+ ¥ interchange.
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V. VEVOLUT]ON EQUATIONS FOR NONFORWARD DISTRIBUTIONS
A. General formalism

Near the light cone z? ~ 0, the bilocal operators $(0)é{z) develop logarithmic singularities In 22, so that the
formal limit z2 — 0 is singular. Calculationslly, these singulatities manifest themselves as ultraviolet divergences
for the light-cone operators. The divergences are removed by a subtraction prescription characterized by sotne
scale i Fo(X;1) = F(X;t;1). Tn QCD, the gluonic aperator

Oyluz,vz) = z,.z.,G:,(uz).E.‘“'(uz, uz;A)G',’,u(vz) (5.1)

mixes under renormalization with the flavor-singlet quark operator. At one loop {i.e., in the leading logarithm
approximation}, the easiest way to get the evolution equations for nonforward distributions is to use the Balitsky-
Braun evolution equation [31] {or the lighi-cone operatots®="_ For the flavor-singlet case, it reads

d 1 _
H g Oal0,2) = fn ﬂ %:B.,(u, V)Os(u2,02)0(u -+ v < 1) dudy, (5.2)

where v = | — u and a,b = g,Q. For valence distributions, there is no mixing, and their evolution is generated
by the Q@-kernel alone. Inperting the BB-equation (5.2) between chosen hadronic states and parametrizing the
matrix elements by appropriate distributions, one can get the well-known evolution kernels such a2 GLAPD and
BL-type kemnels and also to calculate the new kernels R%(z, i€, n) and We8(X, Z). The kernels R*'(z,y:£,n)
govern the evolution of the double distributions:

T Iy
FEF(z.y,t.u)-fojo T AMene ) FEm a0 + .S D, (5.3)

where a and b denote g or Q. Another set of kernela Wc“'(X , Z) dictates the evolution of the nonforward distributions
and asymmetric distribution functions:

1
p%?{'()ﬁt;u):fu ;WF'(X.Z)F:(Z:!;;:)JZ. (5.4)

The evolution of the double distributions will be briefty discussed later in Section VI. Here we will discuss the
structute of the W;‘(x ,Z) kernels. Since the form of the equation is not affected by the t-dependence, “t* will
not be explicitly indicated in what follows.

Before starting the actual calculations, one should take into account that the gluon distribution F7(X) is ac-
companied by the sum of two exponentials while the flavor singlet quark distribution F? (X) with which it mixes is
accompanied by the difference. This sign change is, in fact, compensated by the extra (pz) factor in the rhs of the
gluon distribution definition. The set of evolution equations for J"? (X}, ¥£(X) can be obtained by substituting
the definitions of the gluon (4.8) and quark (4.14) distributions into the BB-equation and performing the Fourier
transformation with respect to the (pz)-variable. For this procedure, the (ps)-factor is equivalent to differentiation
dfdX while 1/(pz) resulta in an integration over X. Note, that both operations change the relative sign of the
exponentials. Hence, it is convenient to introduce first the auxiliary kernels Mt"'(X, Z) which would zppear in the
absence of the (pr) mismatch. They are directly related by

MEMX,2) = f ' j " Bus(u,8) 6(X — 8Z + W(Z — ©)) 0(u+v < 1)du dv (5.5)
o 0

***Instead of the original kernels K°*(u,v) from ref. {31], we prefer to use the kernels Bop{u, v) = — K *¥(1, v} which have
the symmetry property Bas(u, v} = Bas(v,u) .
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to the Balitsky-Braun ketnels B(u,v), which we write here in the form given in ref. [15]:

Ba(u.1) = %G (14 S5/l + 8o/l = 33000 )

Buglu,v) = "‘?'(:,r (2 + E{H)E(u)) .

a (5.8)
Bo{wv)= =Ny (1+4uv—u—v),

k3

=2 (a1 iy B fﬁ.‘ﬁ_é,‘ ‘d_z+{u_u})
B”{u’"]_? ,(4( +Juu—u—u}+m (u} (u)+i (u) m (v) L .
The W-kernels are related to the M-kernels by
WX, 2)= MI(X,2) . WENX 2} = MIUX,Z), (6.7)
& d q
a—xwg‘-‘(x, Zy=-MP(X,2) , WP(X.2)= —ax M 5(X,2Z). (5.8)

Hence, to get WC'Q(X, Z) we ghould integrate MfQ(X, Z) with respect to X. The integration constant can be fixed
from the requirement that W('Q(X, Z) vanisbes for X > 1. Then

4 - -
wio(x,2) = /X MR, 7)dX. (5.9)
Integrating the delta-funetion in eq.(5.5) produces four different types of the 8-functions, each of which corre-

sponds to a specific evolution regime for the nonforward distributions. In two extreme cases, when { =0 or{ =1,
the evolution equation reduces to known GLAP and BL-type equations, respectively.

B. BL-type evolution kernels

When ¢ = 1, the initial momentum coincides with the momentum transfer and F¢(X) reduces to a distribution
amplitude whose evolution is governed by the BL-type kernels:

WL (X, Z) = VX, 2). (5.10)

Taking { =1 in Eq.(5.5) we obtain
1 1
ME,(X, 2) = UHX,5) = / f Barlt, 5} 60X — 62 — v(1 — Z))8(u + v < 1}dudy. (5.11)
o JO

Eliminating the é-function, one would observe that in the regions X < Z and X > Z the U°%(X,Z) kernels
are given by different analytic expressions. However, from the representation (5.11) and the symmetry propetty
Bap{u, v) = Ba(v, u} it follows that IF**(X, Z) = U°%(X, Z}. Hence, it in sufficient to knaw the /-kernels in the
X < Z region only. The basic function Ug(X, Z) = §(X < Z)U**(X, Z) can be calculated from

X
UsNX,2) = % jo Bay (5— (X — v)/Z,v}dv. . (5.12)

The total kernel I/*¥(X, Z) then can be written as
UP(X,2)=8(X < 2)US(X,2) +8(Z < X)UP(X,Z).

One can easily derive a table of B — Ug conversion formulas for ali the structures present in the BB-kernels:
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X bl gy 7
B ~6(Z-X) . 1= . SWZ—=0, &) (3) o,
_ g T
“"’5*(%)5%? - "‘”)1‘:"(%) 7-%'
u+v—-§(]—§‘%) , mj—'x;. (E—%—;) (5.13)

Using Eqs.(5.6) and this table, we can get the BL-type kernels V¥(X, Z). Before doing this, we note that the BL-
type kernels appear as a part of the asymmetric kernel W".(X ,Z) even in the general ¢ # 1,0 case. As explained
earlier, if X is in the region X < (, then the function F (X} can be treated as a distribution amplitude ¥ (Y} with
Y = X/{. For this reason, when both X and Z are smaller than {, we would expect that the kernels W(“(.X. Z)
must simply reduce to the BL-type evolution kernels V**(X/{, Z/¢). Indeed, the relation (5.5) can be written as

1 1 1
MPMX,Z) = : fo jo Bay{u.v) 6 (X/¢ — GZ/C — v{L — Z/¢)) Bu+ v < Ddudy. {5.14)

Comparing this expression with the representation for the U$*(X, Z) kernels, we conclude that, in the region where
X/¢ <1 end Z/¢ < 1, the kernels M*(X, Z) are given by

1
MEMX, 2Yog(x.5)5c = EU“ X/ E/C) {5.15)
From the expressions connecting the W- and M-kernels, we obtain the following relations between the asym-
metric evolution kernels Wc"()ﬁ',Z) in the region 0 < {X,Z} < ¢ (let us denole them by Lg’(X,Z) =
WX, Z)logx,215¢) and the Bl-type kernels Vo'(X, Z):
Lx.2)= 1 VE(XIC 2/ 5 LEO(X, 2) = VIO (X/C.ZAC)
Xz = —V" (X/C.Z[0) i HHX.Z) = 5 v0° (X/¢.2/) . (5.16)

Explicit calculations based on Eqs.(5.5)-(5.9), (5.10), (5.16) give

vx.2) = %2 G { |7 (1+75%) o< +ix —.)‘r,z—-z‘}} 1)
V"'(X-Z)“—Nx{ [2('2 X)+—]9[X<Z)—{X—-X z_.z}} (5.18)
viO(x,2)= 1C {(2——)9(X Z)+( X) 0(X>Z)} (5.19)
- 2 e ) o (5

+6(X—Z)[5ﬁ;7‘-f: 1"_: }a(x<2)+{x-.x,z-.2}. (5.20)

Note, that the ¥#9(X, Z) kernel can be represented as the sum
o o x* - 5
V19X, Z) = T'CF + —'-'-Cp {(1 - 7) B(X<Z)~ {X~ X.Z—oZ}} (5.21)

of a constant term and a kernel which is explicitly antisymmetric with respect to the {X — X, 2 — Z} transfor-
mation. In fact, the constant term does not contribute to evolution since the flavor-singlet distribution amplitude
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W(2) with which it is convoluted is antisymmetric #9(Z) = —¥?(2). For the same reason, the convolution of
V#R(X,Z) with ¥9(Z} determining the evolution correction to F¥{X) behaves like X? for small X.

Furtherimore, the BL-type ketnels also govern the evolution in the region corresponding to transitions from a
fraction Z which is larger than { to a fraction X which is smaller than {. Indeed, using the §-function to calculate
the integral over u, we get

xi¢
MEMX, Z)xgcez = %/ﬂ Ba ([1 —X/Z— (1 ~¢/2)], .,) dv, (5.22)

which has the same snalytic form (5.12) as the expression for Mé"’(,‘\’ Z} in the region X < Z € . For Q(}, g5 and
Qg kernels, this automatically meaos that We*(X, Z)|x<(<# i8 given by the same anslytic expresaion as LMX, Z)
for X < Z. Because of integration, to get W'Q(X Z) one should also know M‘Q(X Z) in the region ( < X < Z.
However, our explicit calculation confirms that W'Q(X Z) in the transition region X < { < Z is given by the
same expression as L'Q(Y Zyfor X < 2.

Note, that the evolut.ion jump through the critical fraction ¢ is irreversible: the §-function in Eq.(5.14) requires
that X/ = v+ {} —u—v)Z/{ or X € { if Z < {. To put it in words, when the parton momentum degrades
in the evolution process to values smaller than the momentum transfer (p = r, further evolution is like that for a
distribution amplitude: the momentum can decrease or increase up to the r-value but cannot exceed this value.

C. Reglon Z>¢(, X >¢

Recall, that when X > (, the initial quark momentum Xp is larger than the momentum transfer r = {p, and we
can treat the asymmetric distribution function F£(X} as a generalization of the usaal distribution function f.{X)
for a somewhat skewed kinematics. Hence, we can expect that evolution in the region ( < X €1,( < Z< lis
similar to that generated by the GLAP equation. In particular, it has the basic property that the evolved fraction
X is always emaller than the original fraction Z. The relevant kernels are given by

MEX, Zlcxczar = %f_d' B ([1 ~ X/Z —o(1 - (/2)) ,v) dv. (5.23)

Introducing the integration variable w = v(1 — {/Z)/(1 ~ X/Z), we obtain the expression in which the argumenta
of the BB-kernels are treated in a more symmetric way

ab, Z-X —- t [t
MOX, Z)egxgzr = W_/ Ba ({1 - X/Z),w (i - X"[27)dw, (5.24)
o

where X' =X —(and Z' = Z = { = vf{l - X'/Z’) are the “zeturning” partners of the original fractions X, Z.
Moreover, since Z — X = Z' — X', the kerneis Mc"'()(. Z} are given by functions symmetric with respect to the
interchange of X, Z with X, Z’. This observation can be used to check the results of calculations. However, since
we are dealing with the asymmetric situation X > X', Z > Z', other practical applications of this symmetry are not
evident at the moment. Again, we can easily obtain a table for transitions from the B,u-kernels to the MY kernels
fortheregion (< X € Z < 1:

S(u)b(v) — 6(2 — X) ; 1—-% ; (u+v)—-#;[2-%-§];
uu—-%‘-(l—%) (1-7,-) ; (a(u)§+a(u)§)~m %+;—']
(wF v )~ 2[5+ (2)]. 6)
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Introducing the notation Pg‘{X,Z) = W{"(X, ZNcex<z<1 and using the formulas given above, we calcuiate
the P-kernels:

i 1 2
=20 { i 1435 s -0 [ EE e}~ Lrxiny, G

2z 1-=z
PRX.7) = f}riN, ﬁ { (1 - %) (1 - %) + %} - %Po.(-’flz)‘ (5.27)
X, E) = ?cp {(1 - %) (1 - ;) + 1} - % a(X/Z), {5.28)
P(!’(X,Z) = ? N, {2 [1 + %] zz_—z‘,x + ﬁ [(—)ZE)J + (%')2]
+ 86X —2) [%‘,L -2 jﬂ l I-d_i;] } . EX—zP,,(X/Z) . (5.29)

They also have a symmetric form. The arrows indicate how the asymmetric kernels PE"(X , 2 are related to the
GLAPD kernels in the { = 0 limit when Z = Z° and X = X'. Deniving these relations, one should take into
account that the asymmetric gluon distribution function .F" (X} reduces in the limit { = 0 to X f,(X) rather than
to S (X)-

In the region Z > (, the evolution is one-sided: the evolved fraction X is smaller than Z. Furthermore, if Z < ¢
then also X < Z, i.e., distributions in the X > ¢ regions are not affected by the distributions in the X < ( regions.
Hence, just like in the GLAP case, information about the initial distribution in the Z > ¢ region is sufficient for
calculating its evolution in this region. This situation may be contrasted with the evolution of distributions in the
Z < ( regions: in that case one should know the asymmetric distribution fuactions in the whole domain 0 < 2 < 1.

Qualitatively, the evolution in the X,Z > ¢ region proceeds just like in the GLAF evolution: the distributions
shift to smaller and smaller values of X. In the GLAP case, the distributions approach the §(z) form condensing
at & single point # = 0. In the ssymmetric case, the whole region Z < ¢ works like a "black hole” for the partons:
after they end up there, they will never come back to the X > { region. Inside the Z < ( region, the evolution
is governed by the BL-equation transforming the ¥¢(Y) distribution amplitudes into their asymptotic forma like
YY,¥Y¥(Y — ¥) for the quarks and (Y¥)%,(Y¥)?(¥ — ¥) for the gluons; a particular form is dictated by the
symmetry properties of the relevant operators.

VI. ASYMPTOTIC SOLUTIONS OF EVOLUTION EQUATIONS
A. Evolution of asymmetric distribution functlon
To describe the qualitative features of the QCID evolution of the nonforward distributions, we will consider
the eimplest case, i.e., the evolution equation for the flavor-nonsinglet (valence) functions. Then Qg, ¢Q and gg
kernels do not contribute, and the evolution is completely determined by the QQ-ketnel. The multiplicatively
renormalizable aperators in this case were originally found in ref. [5]

O = (28,)" GASSCY2(2 § f28, )¢ 6.1)

Here we use the symbolic notation {z § /=8, ) of ref. [5], with §=0 — 8 , 83 =8 + 8 and C/*(y) being the
Gegenbauer polynomials. This means that the Gegenbauver moments

1
Cn) = [ G221 - 1)FUZi) 2 (6.2)

of the asymmetric distribution function F¢(X; u) have a simple evolution:
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in Fu/ﬂ]hmu , (6_3)

et = Gt [ 1L

where fy = 11 — %N! is the lowest coefficient of the QCD S-function and 7, are the non-singlet anomalous
dimensions [50,51}

1 1 "“1]

= —— s 6.4
Tn Cr[z (n+l}(n+2)+2§j1 (6.4)

For n = 0, the Gegenbauer moment coincides with the ordinary one and, since 7¢ = (0, the area under the curve
remains constant. QOther Gegenbauer moments decrease as 4 increases. For the ordinary moments of the nonforward
distribution

1
Mut = [ FlXa X" ax, {6.5)

using explicit expression for the Gegenbauer polynomials we can derive the following expansion over the multi-
plicatively renormalizable combinations C¢(n, p):

2(2n +3)

N
MG = ¢ NI + D e g Gl (6.6)

Wa can also write the expression which gives the evolved moments My ((, u} in terms of the original ones:

(~1)"2(2n + 3) [lnﬂu/ﬂ Teife 0 (=1)*(k+n+ 2! Mu(Copo). (6.7)

N
=N N 1 —_—
MalCp) =T NI + ”'E} Wrni N —n) |Tnp/h 2+ TRk + )l (n — £
With increasing NV, the number of contributing Gegenbauer moments Cc(n, p) in Eq.(8.8) incteasea. An important
observation is that the non-evolving (and {-independent, but t-dependent) term C(0) contributes to each moment.
As a result, in the 4 — oo limit, all the moments tend to constant values determined by the n = 0 term in the sum
(6.6):

]

— N
Mull,p— ) =¢ TE R

¢
o) = f @ B(X/C(1 - X/ XV dX. (6.8)
]
This means that in the limit 4 — oo, the function F¢(X; p — o) completely disappears from the region X > (. ie.,
it reduces lo the distribution amplitude ¥,(¥} which ultimately tends to the usual asymptotic shape 8¥(1 — Y7
in the Y = X/( variable:

Fe(Xp— 00) = SC{OX(E = X/CHC (69

One may also be interested in finding expressions showing how the function #¢{X; ) changes its shape {tom an
arbitrary original curve F¢(X; pg) to the ssymptotic one. Note, that the Gegenbauer moments for { < 1 involve
integration regions in which the argument C.’.IZ(QZ/C — 1) of the polyncmials extends beyond the segment (—1,1)
where they form an orthogonal set of functions. Hence, a formal inversion of the Gegenbauer moments is only
poesible for { = 1. In this case, the inversion produces the standard solution of the evolution equation for a
distribution amplitude [6,6)

! O 4+ 3) . InppfA]™/% 1 oy
Fe=ilXin) = E mxx GH2X - 1) [m] L CH32Z - ) Fi=1(Zipo)dZ.  (6.10)

Thus, if the initial distribution coincides with one of the eigenfunctions XX C,‘:" :(2}( — 1), the evolution ip very
simple: the function just decreases in magnitude without changing its form. An attractive feature of such a
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situation is that approximating the icitial distribution amplitude by a few lowest Gegenbauer polynomials one
obtains a simple model of its evolution. Inspired by this observation, one may be tempted to construct a similar
representation for the evolution of the asymmetzic distribution function. Using the expansion of the light-cone
operator p(0)A#¥(z) over the multiplicatively renormalizable operators Oy {see [31] )

w(U)A“zw(z)—E( 1)"2(2"+3) j ()"t (uz) du (6.11)

n=0

and inserting it into the nonforward matrix element, we obtain

oo “rn/Ba 1
FlXim) =Y (-1 ) {*Ce(n, po) j {u)" 160N X e ul) du (6.12)
a

2(2n + 3) (ln HolA
nl inp/A

Integrating (u@)"+14("}(X — u() over u, we get the Gegenbauer polynomiala C’.;'"(zx/c ~ 1) accompanied by the
spectral condition X < (. This means that the formal integration does not give a correct result for functions which
do not vanish outside the region X < ¢. For such functions, one should first perform the summation over n (which
is, of course, practically impossible) and only then take the u.integral.

Another limit in which the integral over u can be taken safely is ¢ = 0. For small ¢, the Gegenbauer pelynomials
ate dominated by the senior power Z* and in the { — 0 limit we obtain

" gtoyyy ((R2a/AY f g
FlXip) = Z_% 54Xy Tk / FlZm) 27 d2Z, (6.13)
i.e., the usual result that the ts of parton dencities have a simple GLAP evolution. Note, that in this

case, the functions which evolve without changing their shape are §*)(z). From a practical point of view, this
observation in of little nse. Modeling the sclutions of the GLAP equations is known to be a rather complicated
excercise usually involving a numerical integration of the evolution equations.

Herce, the representation (6.12) should be understocd only in the sense of (mathematical) distributions in X
rather than functions. To get meaningful results, one should integrate them over X with some smooth function.
In particular, integrating it with X¥, one obtains the formula (6.8) for the evolution of the X™ moments of
nonforward dietributiona.

B. Evolution of double dlstribution

Solving the evolution equation for the valence double distribution F(z, y; u) defined by
{p - 7810 uz, vz}l | p, 8} ls2=0

1
- ._‘(P,,,,)fu(p,')fu % [C—lt(pl]-{'(rs) + E.s(p.}-iy(n)] Flz.yip)8(z +p < 1) dedy, {6.14)

we can give an alternative derivation of the asymptotic form of the valence nonforward distribution Fo(X; p). The
p-dependence of F(z,y; p) is governed by the evolntion equation

1 1
ﬂ%ﬂam#h]ﬂ JE-L Raqlz, 9.6, 0} F(§ g, p)dn. (6.15)

Since the integration over y converta F{#, )} inte the parton distribution function f(z), whose evolation is governed
by the GLAP equation

ni ftw = [ % raglesosic: e, (©18)
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the kernel Hgg(z,y;£.n) must have the property

1-r
Rgolz,wé mdy = %qu(zIE)- (6.17)

For a similar reason, integrating Rgq(z, ¥;£,n) over z one should get the BL-type kernel:

1-
" Raqlz.:6.mdz = Vaqly.n). (6.18)

Explicit calculation givea for Rog(z,y; £. 1) the following result

Roglz. 6. n) = —C‘r {ﬂ(ﬂ < 2/€ < min{y/q, §/7}) - ~6(l —z/6)8(y—n) (6.19)
0(0 <zl <1)afE }

LS D21 [Latar - yim)+ stere - 900)
Raq(z,wém = —Bao(v nefé, 5 — a£/€). (6.20}

It can also be obtained from the BB-ketnel Bgq(u,v) using the relation

1t is easy to verify that the spectral conatraint z+y < 1 is not violated by the evolution: the kernel Rgg(x,¥:¢,n)
has the property that x +y < 1 if £+ 5 < L. Using our expression for Rgg(z,y;£,9) and explicit forms of
the Pgq{z/f) and Vgg(y,n) kernels {see Egs. (5.26), (5.17) ) one can check that Rgg{z,y;{,n) satisfies the
reduction formulas (6.17) and (6.18). To solve the evolution equation, we combine the standard methods used
to find solutions of the underlying GLAP and BL evolution equations. To solve the GLAP equation, one should
consider the moments with respect to z. Multiplying Eq.(6.15) by 2", integrating over z and utilizing the property
Roqlz. 36, m = Rog(z/§,1:1,0) /&, we get

d 1
o Falti) = jo By mYFa(mi il (6:21)

where F,(y; i) is the nth z-moment of F(x,y; 4}

-
= [ 2P viie (6:22)

and the kernel R, (y, n) is given by

Ration) = i';'cp{[(%)"“ [+:5] 9(y5n)+{v—'ﬁ.rr—-ﬁ}] +8ly—n) [;-/‘d—]} 29

It ia straightforward to check that R.{y, n) has the property

Ry, hwain) = Ra(n yuwa(p),

where wa{y) = {¥)"*'. Hence, the eigenfunctions of Ru(y,n) are orthkogonal with the weight w,(y) = (y#)"*+?,
i.e., they are proportional to the Gegenbauer polynomials C""’s‘ﬂ(y—ﬁ) {cf. [6,48]). Now, we can write the general
soluncm of the evolution equation

Fulyi ) = 2(ggyr+r 20t D120+ 2)1 <5 > @+ 0+ Dk pnvars, o [lns(.un/n\) e

win £ 1)] EIITDIRG Tog(1/A) Ant(a}, (6-29)

where
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Aalpic) = j Fulyino) 1y — ) dy 6.25)

and the anomalous dimensions TE") are related to the eigenvalues of the kernel R.(y,n). They coincide with the
siandard non-singlet anomalous dimensions vy (6.4): -yE"J = Yn4r- Since -r.(,u) = 0, while all other anomalous
dimensions are positive, in the formal g — oo limit we have Koy, g — 00) ~ yj and Fn(y,u — o) = 0 for all

n > 1. This means that
F{z, 15 p — oo} ~ 8{£) vif, (6.26)
i.e,, in each of ita variables, the Kmiting function F(x,y;p — oo) acquires the characteristic asymptotic form
dictated by the nature of the variable: #(z) is specific for the distribution functions {50,51], while the yg-form is
the seymptotic shape for the lowest-twist two-body dietribution smplitudes [6,8]. For the asymmetric distribution
function this gives F¢ (X, s — 00) ~ (X/(*)(1 — X/¢). This result was already obtained in the previous subsection.
VIIL. BASIC USES OF NONFORWARD DISTRIBUTIONS

A, Deeply virtua)] Compton acatterring

Using the parametrization for the matrix elements of the quark operator, we can easily write a partor-type
representation for the handbag contribution to the DVCS amplitude:

™{p.q.¢) 2(m’) E’ [(—9"" + %(PPQ"'*'P"?"')) { 2P W u(pITHO) + 3 U(p W§'F - Fﬁ'Ju(p)Tx(C}}

e m,:(?;:; {u(pf)n "ulp) TAC) + qr)u(p)'rsu(P)Tp(C)}] 1)

where §" = v,¢'*, and T?(() are the invariant amplitudes depending on the scaling variable (. In particular,

b 1 1 a
TR = —fn [m + m] (F(X0+ Fl(X0) dX. (7.2)

Since the micleon is the lowest bound state in the 3-quark asysiem, the nonforward distribution function for
t < 0 is real. Hence, the imaginary part of TH(() can be produced only by singularities of the terms in the square
brackets. Taking into account that the nonforward distributions vanish for X = 0, we conclude that only the term
containing 1/(X — ¢ + i¢} generatea the imaginary part:

LImTP() = FG) + FAG) )

with a similar expression for Im T3((). Ae discussed in Section 1, the function F2(¢;t) doen not coincide with the
ususl parton distribution f.((), even in the formal # — {t limit. To get the real part of the 1/(X — ¢ + ic) terms,
one should use the principal value prescription

1
T9(0) = -P jo (R0 + R (7.4)

Since the principal value prescription is based on cancellation of X < ¢ and X > ¢ parts of the integral, it makes
sense to preserve F7(X;t} as a single function. Splitting it into X < ¢ and X > ¢ components, one would simply
get two divergent expressions for the real part of the amplitude.

Let us study how these formulas are modified by the evolution. At one loop, the In Q? term can be easily
calculated using the coordinate representation:
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i) = 52 f e [ g gt (6 15 Ine? Bag (v duct. {1.5)

Parametrizing the matrix element by the nonforward distribution (4.1}, we obtain for the s-channel short-distance
amplitude

1 sl
(2} P 7 Bgglu,v) dudy _ 2 BQ {u, v} dudy
B ) =@ /., _[_\(qp)(g+[_ix—nx')p]1+i(_ e f f T-wX X +iec’ (78)

whete X' = X — ¢. Using explicit expression for the Bgg(u, v} kernel, we obtain

1 1 a . [3., (X +ie ,}
N SRS Y PO o | . &
Ty X Xf+i¢{'+2=rc’ [2“" (mc+iz)] nQ D

A similar expression can be derived for the evolution of the u-channel-type term:

1 wyy— __ 1 o
S erriadiGis x-:‘c{”zxc"

%+In()(/(,‘)l 1nQ’} . (7.8)

Clearly, the u-channel term can be obtained from the s-channel one by the change X' — X, ( — ~¢(. In the
region X < ¢, both ¢ and t} are real. Furthermore, it is easy to establish that the correction terma in both cases
vanish when integrated with the asymptotic distribution 6X(1 — X/¢)/¢, explicitly showing that the latter does
not evolve with Q2. Note that t§(X) is purely real in the whole range 0 < X < 1, while {{{X) is purely real only
in the region X < (. For X > (, it has an imaginary part:

i{(X):—PX;_( + b (X - )+ ;—;CF {g(—le_c+i1rﬁ(X—C))
Cfax Q) _[mlXK -1 2
+”[(X—(} . [ X-¢ +}In(,',f . (1.9)

This information can be used to write down the expression showing the leading logarithm evolution of the
function F¢(¢; G%) determining the imaginary part of the amplitude:

dz
1—+

£@ = 5Gab+ moemayad [ {sx-0 (3 - [ 1)+ g} monahax. a1

Evidently, the expression in the braces is given by the asymmetric evolution kernel J“';Q (¢, X) (5.26). For the usual
distribution function the analogous equation contains the GLAPD kernel P((/X}):

dz ) . 1+ ({/X)?

1
e = rab+ grorm@idy [ {sx-0 (3 -2 [ 75)+ HEEE  napax.

The compatison of the two expressions shows that evolution of the function F¢((; Q7) is not identical to that of
F(C: Q™). Recall also that in the forward case the lowest-order amplitude is proportional to 1 /(X —{ +ie}+1/(X +
¢ — i€,

B. Gluonlc contribution to hard Tusive electroproduction

The kinematics of hard exclusive meson electroproduction processes v*p — Mp’ is very close to that of the virtusl
Compton scattering, especially in a situation when one can neglect the mass of the final meson. Again, one can use
the a-representation rules to determine possible regimes capable of producing a powerlike contribution for large Q2.
The basic difference is the absence of the regime analogous to short-¢ircuiting a subgraph containing the photon
veriices, since inatead of the final photon described by an elementary field we have now a bound state. Hence,
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the leading short-distance regime corresponds to contraction into point of a subgraph which contsins the virtual
photon vertex and located in the middle belween the two long-distance-sensitive pp'- and ¢'-components of the
diagram. The pp'-component is described by the nonforward distribution function while the ¢’-part is parametrized
by the meson distibution amplitude.

Depending on the type of lines connecting the short-distance subgraph with the {p'|...|p} matrix element, one
deals either with quark (Fig.8a) or gluonic (Fig.10} contributions to the lowest-order amplitude. The structiure
of the quark contribution is similar to that of the hard-gluon-exchange contribution to the meson electromagnetic
form factor, with the distribution amplitude of the initial state substituted by the guark nonforward distribution.
‘There is also an analog of the soft contribution to the meson form factor (see Fig.98), It corresponds to the infrared
regime oy, — 00.

Let us concentrate here on the gluonic contribution which requires & proper handling of restrictions imposed by
gauge invariance. Using the coordinate representation for the hard propagators, we can write the contribution of
Fig-10a &5

T}"(P,P'.Q')=/(q',Ml|5(0) TS (=n)r" " 55 (0 — )ty ()0} (1AM A ) lp) diad'n,  (7.12)

where 79, 7% are the SU(3) color matrices. The first matrix element here can be expressed through the meson
distribation amplitude () while the second one is related to the asymmetric gluon distribution. Qther 3 lowest-
order diagrams can be written in a similar way. Applying formally the power counting (see Eq.(3.7) aund discussion
precading it), we may conclude that each gluonic contribution has an extra * factor compared to the quark
term, mitice the quarks have twist 1 while the twist of the gluon vector potential A, is zeto. Technically, the
enhancement appears when the p,p, factor from the matrix element (1| A5(21)A4}(22)|p} combines with the Qs 0
factors from hard propagators and polarization vectors, thus producing the eatimate {p'|AAlp) ~ Q*. However, the
power counting formulas like (3.7) only give an upper estimate for the refevant contribution. The actual behavior
is determined by the twist ip of the composite operator (F constructed from the elementary fields corresponding
0 the external lines of the §D-subgraph. It is well-known that the simplest gotge-mvariont composite operator
containing two glnonic fields is G,,G2, and its twist equals 2 rather than 0, just like for the lowest-twiat ¢ ...¢
operator. Diagrammatically, this means that, in Feynman gauge, the leading-power terms of 4 lowest-order dia-
grams completely cancel each other and the total result is suppressed by 1/@? compared to lending contributions
of separate diagrams. In general, picking out non-leading power terms (higher twist contributions) is a notoriously
difficult problem of perturbative QCD. However, in cur case, the cancellation of leading terms is guaranteed by
gauge invariance of the total result. Hence, choosing a gauge in whick the combination g),¢) (' |A:(zl)Af,(zg)|p)
is prevented from producing the (¢'p)? factor, we would eliminate the artificially enhanced terms on diageam by
diagram basis. This goal is achieved if one uses the gauge ¢ A, (#;¢') = 0. Then A, can be expressed in terms of
the ficld-strength tensor G, (see, £.¢., [52])

o
Apl2:¢) = q”j Guplz +og)e™* do. (7.13)
]

This representation alsc makes it easy to parametrize the matrix element {p'|A%(z1)A%(z3)[p} in terms of the
gauge-invariant gluon disteibution:

' | 4221 4V A (22 ') | P sy msgyim0 =

8 a(p')j'u(p) (—mw + pﬂqu‘,) (7.14)

Ni-1 2(¢'.p) (r- 1)

1 2
xj (e—ixtpu)d-ix'(px;)+eix'(pc|)-ix(pn)) FX)
a

W ogm T +

In ref. [B], the amplitude of hard diffractive electroproduction was calculated for the longitudinal polarization
of both the virtual photon (e, = {g'* + {p*}/Q)} snd produced vector meson {¢f, = ¢'“/my). In this case, the
contribution of Fig.10a in the (§'A) = [ gauge can be written as
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Tielp ' r) ~ ﬁ(P’]é’ﬂ(P)/o dryy (1'}_/n Sp {Evff- (CC:_ .::f)z Yu (((:YX_ 3:::;,: ‘n-}

_ Pati + wz;) FHX)
(oo B a2 718)
where @y {7) ia the distribution amplitude of the longitudinal vector meson. This gives
a(p)q’ 1 dr 1 FHX)
T, (04, ~"(P)!"(P)j dr ¢
Telpg.r) Gme ), wvir) | XX v dX. (7.16)

Other diagrams give similar contributions, differing only in the r-dependent factor. For Fig.105, one should
substitute 1/7 by 1/%, while Figa.10¢, d both have 1/77 factor. Since 1/7+ 1/7 = /77, the total contribution atso
has the 1/rF structure

vI=7 * dr 1 FUX) .
Teelpogur)~ Omy _L PV("');'_: A X(}i—'—(+_:'c)d'x' (7.17)

where T = comes from @(p') = T = ¢ 6(p). The ampitade Tre(p, q.7) has imaginary part due to the factor
11X = ¢ +ie):

1 - 1
2 I Traf() ~ ¥ Qimf 70 [ %ar. (7.18)
In ref. [8], the gluonic matrix element was approximated by the gluon distribution function F4(¢). To get our result
from that of ref. (8], one should substitute there f,{¢) by T —¢ FO/

Though the asymmetric distribution function .‘Fc’(X ) coincides with X f,(X) in the limit { = 0, in general these
two functions differ when { # 0. As discussed earlier, the imaginary part appears for X = ¢, i.e., in an asymmetric
configuration in which the eecond gluon carries a vanishing fraction of the original hadron momentum, whike ¢ J:(O)

corresponds to a symmetric configuration in which the final gluon has the momentum equal to that of the initial
one.

VIiIl. FACTORIZATION AND END-POINT EFFECTS
A. Goneral remarks

The standard question about pQCD applications for hard processes is whether factorization of short- and long-
distance contributions is maintained in higher orders. Since Feynman integrals can be written in different repre-
sentations, one can approach the factorization problem in various ways. In particular, the lassic studies of deep
inelastic scattering in QCD [53,50,61] relied on the operator product expansion in which the coordinate representa-
tion plays a crucial role. The claims that factorization also holds for a more complicated Drell-Yan process [B4,55]
were supported by studies [56,35,57] basad on the anslysis in the momentum representation (see, however, [43]).
The early studies of exclusive processes in QCD which started with the analysis of the large-3? behavior of the
pion EM form factor also incorporated both the OPE-like coordinate representation methods [2.4] and momentum-
representation oriented approaches [3,6]. Factorisation was intensively studied in the following years (see [45,50]
and references therein). Referring an interested reader to ref. [16] for a recent momentum-reptesentation analysis of
factorization for hard exclusive electropreduction processes, here we briefly discuss possible sources of factorization

breaking analysing them within cur approach [5] based on the combined use of a-representation and the OPE-type
methods.
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B. Structure of the lowest-order term

Exclusive processes are rather vulnerable to factorization breaking. In costrast to inclusive cross sections,
factorization for exclusive ampitudes may fail even at the tree level, Hence it is a good idea just to write down
the lowest-order contribution and eatsfully look at it. Take the DVCS amplitude (7.2). It has terms 1/(X — i)
and 1/{X — ¢ + ie) which are singular for X = 0 and X = (, respectively. An immediate question is whether
these singularities appear within the tegion of integration and if yes, whether they are inside that region or at
its end-points. To be prepared to address this question, we performed a detailed study of epectral properties of
nonforward distributions. Our a-representation analysis shows that 0 < X < 1. Since the singularity 1/{X —( +1c)
is inside the integration region, we can write it as P{1/(X — ()} — im6(X — ) it generates both real and imaginary
part of the amplitude. On the other hand, the 1/{X — i¢) mingularity is at the end-point, and the relevant real
part ia given by a divergent integral unless the nonforward distribution F¢ (X} vanishes at X = 0. Hence, to claim
factorization for the real part, it is absolutely necessary to give the arguments that F¢(0) = 0. In our analysis,
we derived F(X) from the double distribution F(z,y}. The basic expression for F¢(X) shows that F(X) ~ X
for any F{z,y) which is flnite az z, y — 0. Owe can get Fc(0) # 0 only if F(z,y) is singular for 2 = 0, e.g., if it
behaves like §{(z} and does not vanish when y = 0. If F(z,y} has such a behavior, there should be a special reason
for it.

Similarly, for the meson electroproduction, the integral over + containe the factor 1/#{1 — r) singular at the
endpoints * = 0 , r = 1. Again, the factorizalion formula makes sense only if the distribution amplitude w{r)
vanishes for = 0, 1. Since (r) is analogous to the ¢ = 1 limit of a nonforward distribution, we may expect that
it alec vanishes at T = 0 because of small phase space for the  — 0 configuration. Furthermore, since for massless
quarks p(1 — 7) = 2ip(r), if p(r) vanishes at T = 0, it aleo vanishes for r = 1.

OF course, even if the vanishing at end-points holds for any diagram of perturbation theory, this still does
not mean that the nonperturbative functions have the same property. So, 8 cautious statement might be that
if in perturbation theory some function does not vanish at a particular end-point, it is unlikely that it will van-
ish non-perturbatively. If it vanishes perturbatively, there is some hope that this property is preserved for the
nonperturbative function.

The standard procedure to get an educated guess concerning the end-point behavior of hadron distribution
amplitude @{r, p) is to study the ssymptotic 4 — oc limit of their evolution. This idea is equivalent to saying that
(7, p) has the same behavior at the end-points as the relevant BL evolution kernel V{r, r'). In particular, in refs.
{58] it was shown that p3*(r) ~ 7(1 — 7) for the longitudinally polarized p-meson while §*(7) ~ 1 — 27¥ for the
transversely polarized one. This result excludes the tranaverse case from straightforward pQCD applications. This
fact was repeatedly emphasized in refs. [8,9,16,19].

Similar estimates of the end-point bebavior of the distribution amplitudes follow from QCD sum rule connider-
ations. In particular, if perturbative term IIP**(r, M'?) of the QCD sum rule (M? is the SVZ-Borel parameter)

Foplr)e ™+ /M” 4 higher states = I?™**(r, M?) 4 condensates (8.1)

vanishes for r = 0 and r = 1, one can argue that because of quark-hadron duaslity, w(r) should also vanish at
the end-points. For the longitudinally polarized p-meson, we have indeed I15™*(r, M?) ~ {1 — r}. However, for
trangverse polarization, H.’}'"(r, M?) ~ const, and integrating wr{r)/T over T one faces a logarithmic divergence.

Note, furthermore, that both quark and gluon propagators of the pimplest hard subraph have denominators
propotiional to r. However, for 8 longitudinally polarized virtual photon, only the O{r) tettn it the numerator of
the quark propagator survives which converts the 1/77 singularity of the hard amplitude into 1/r. This will not
happen if the photon is transversely polarized. Hence, for tranaverse polarization one would face the integral with
pr(7)/r¥ which linearly diverges if 7(7) ~ const. Such a strong divergence indicates that the amplitude may be
dominated by the IH-regime (see Fig.9b) with soft quark exchange.
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G. Doubie-flow regime

One of the lessons from the discussion above is that taking into account only the denominators of the “hard”
quark and gluon propagators one is guaranteed to get a 1/7? factor capable of destroying factorization from the
very start. Tt is the eancellation of one power of r by a numerator factor in case of a longitudinally polarized virtual
photon which makes the factorization possible. In the absence of this cancellation, even if we take @ (r} ~ 7(1=-7),
the integral would logarithmically diverge. One may cbject that in such a situation factorization still works if pz(r)
vanishes faster than 7 as 7 ~+ . Note, however, that evolution genstates terms proportional te 7

4
oo(r®) = pr(r @) + QP p? jﬁ V(r,*Yor( u?)dr,

since V{r, ') ~ 7 for small r. In the presence of nonzerc masses m or other infrared cut-offs, one should change
1/r by 1/(r + m*/Q*). As a result, the logarithmic divergence converts the = integral into an extra In Q*fml.
Together with the evolution logarithm In Q?/p?, they would amount to a double logarithim in a one loop diagram
of Fig.11 type. It should be emphasized that this is not s Sudakov double logarithm. In particular, in two loops
one would only get In® @? (In® §? from evolution and In % from the r-integral) rather than In' @2. The possibility
to get an extra logarithm in the form-factor-type amplitudes was discovered a long time ago in a scalar model (see
¢.g., ref. [60]). In a scalar model, there are no numerator factors to moderate the 1/? singularity, hence such &
possibility is always realized. In ref. [§], the diagram for a scalar analog of the pion form factor was studied with
the help of the a-representation and the Mellin transformation. It was shown that, in the superrenormalizable &(‘4]
model, this diagram has the In[@?/m?)/@* behavior despite the fact that there is no logarithmic evolution in this
model. The logarithm appears because the leading SD-pole 1/(J -+ 2) for the Mellin transform of this diagram
can be gbtained in two ways: from the small-py integration (pr = o + w3) and from the small-pp integration
(#r = a4+os). There are no other possibilities. In particular, small-A integration (A = a3 +as+oa+ oy +ag) gives
a non-leading pole 1/(J + 3). Hence, the leading term comes from a configuration in which the large momentum
@ flows simultaneously through two subgraphs Vi = {01,53} and Vg = {o4,os} while the momentum through the
intermediate line ¢3 is small. Such a configuration was called in ref. [B] the double-flow regime.

1n & renormalizable ¢%, model the diagram shown in Fig.11 has the in?[Q*/m?]/Q" behavior because the leading
SD-pale 1/(J + 2) can be obtained in three ways: from small-) integration, from small-py, integration and from
small-pg integration. The factorization for a scalar analog of the pion form factor in the ¢?,) model was studied
in more detail in ref. [61}. It was shown there, in particular, that the In? % /m? behavior of the one-loop diagram
reaults from the overlap of the evolution and the double-flow regime. In ref. [5), it was emphasized that the presence
of the double-flow regime is a natural feature of exclusive ampitudes. Hence, to establish factorization, one should
first check whether it is present or not. For the pion form factor in QCD (and other renormalizable models with
spin—% quatles) its absence to all orders was demonstrated in ref. [5]. i

A rather peculiar double-flow contribution appears in a two-loop pQCD diagram for the nucleon form factors [62].
Its specifics ia that it works for a term in which one takes only quark masses in the numerators of the propagators
of the intermediate lines. Proceeding by a routine calculation, it is rather difficult to detect such a contribution
among a wide variety of two loop terms. However, it is rather easy to find it if one has & guiding principle, such as
the requirement that both the left and right components of a double-flow configuration should simultanecusly give
the leading power behavior.

1X. COMPARISON WITH OTHER APPROACHES AND NOTATIONS

In our definitions of various distribution functions, we took the relevant matrix element and expressed it through
an integral representation over the momentum fractions, incorporating the spectzal condition 0 < X < 1. Another
approach is to introduce distribution functions by making a Fourier transform of the matrix element with respect
to (pr) {cf. [63,32,33]). One can easily derive the result of such a procedure by rewriting our representations in a
form with a univeraal exponential in the r.h.s. Consider, e.g., the matrix element for the quark operator:
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{78 | $a(0ZE(D, 2 AWa(2) | 2, 8)]12=0 (5.1
1 . v . - =
= a(p', o) iu(p, a) j e~t0n [FE(X:i)ﬂ(O <X<D)-FHC-Ki)o(-14¢<X < c)] d¥ + k"
—14(
The Fourier transformation would project out the function
FrX=ra&no0c X< -7 -Xie-1+c <X <50 9.2)

which coincides with the quark distribution for { € X < 1, reduces to the (minus) antiquark distribution for
-14+{ < ¥<0andis given by their difference for 0 < X < ¢. The X-variable changes within the segment
(-1+4¢.1} centered at X = /2, with the total range length equal to 2 — {. To avoid the non-symmetric and
¢-dependent limits, one can introduce the variable («f. [11])

. _ X2
gk (93)
which changes from —1 to 1. The ratio
-5
(= (9.4

is an alternative parameter characterizing the longitudinal momentum asymmetry of the non-forward matrix ele-
ment. For { = 0 and a masslesa hadron, it varies between 0 and 2. The reversed relations are

€ goiHE? g . _F-g2

CCivegr A =iwen T Tren

(9.5}

Using translation invariance {cf. Eq.(4.14)), one can easily derive that the operator with the quark fields taken
at symmetric points —z/2, 2/2 has a rather compact representation in terms of the Z-variable:

1
(98 | Ba(—2fD)EE{ 22,2/ AVal2/2) | P, #) 0220 = E(P', 8')Eu(p, 8) j_ ) e~ P Y (R £ 0)dE+ “E,”, (96)

where P = (p + p')/2 is the average momentum of the initial and final hadron (note, that (Pz) = (1 —¢{/2)}{pz} =
(p2)/(1+£/2) ). This representation in equivalent to the definition of the off-forward parfon disiributions Ho(Z,£; 1),
E,(%,£;1) introduced by X. Ji [11] (eee also [12]). Basically, the laiter are related to our non-forward distributions
by

FoXiny = L+ &/DHLEL), )

and similarly for other functions. The off-forward distributions Ho(£, §;1), ete. are defined both for positive and
negative . Depending on the value of £, one can distinguish three different components: quark (/2 < £ < 1),
antiquark {~1 < £ < ~£/2) and mixed “quark minus sntiquark™ (—£/2 < ¥ < £/2) components of /. The mixed
component correasponds evidently to the region 0 < X < ¢ of the X-variable in which the nonforward distributions
can be treated as distribution amplitudes. Since X(pz) = (2 + £/2HP2) and (X — ()(pz) = (£ — £/2)(P2). the
partons in this picture carey momenta {£ + £/2)P and (Z — £/2)P- Using Eqgs.(9.5),(9.7), one can relate our QQ
evolution kernels with those given in ref. [13]. The glueonic matrix element can be alao represented in the form of
Eq.(9.6):

(7 12050 O =t/ DE (=22, £/ G (2/2) | o ©8)
= Jat)eutp)(Pr) [ e HOOu, (5 6y a2 By (69)

Due to the symmetry property H,(Z,£:1) = H,{—£, £;¢), integration over Z in this case can be restricted to the
0 < T <1 region. Note, that in the forward limit £ = 0, ¢ = 0, the function H (%, £;¢) reduces to Tf; (%) (<
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Eq.{4.11)). Ta get an off-forward distribation reducing to f;(%), Ji [13] uses the definition equivalent to adding
a factor of  in the integrand on the rhs of Eq.(9.9): H (£} — :H:‘(E,E;t). However, & = 0 corresponds to
X = (/2 or to the middle-point ¥ = 1/2 of the distribution amplitude Wf(Y} (see Eq.(9.5)}, i.e., to a situation
when the giuons carry equal fractions {p/2 of the ctiginal momentum p. Since H (£,£;2) is an even function of
Z, there are no evident reasons that it vanishes for £ = 0. Hence, dividing H,(,£;¢) by £ produces an artificial
singularity of Hy'(Z,&;t) for £ =10.

Another parametrization for the non-forward matrix element of the gluon operator was proposed by Collins,
Frankfurt and Surikman [16). Their definition of the non-dragonal gluon distribution f;(#,, £3;1) is also based on
the Fourier transformation. For positive values, their variables x;, z5 correspond to onr fractions X and X - = X,
respectively. In cur notatione, the function f;(xy = X, %2 = X — (;1) can be written as

LiX, X -ty = FX:1) {9.10)

1
XX -0
The factor 1/X(X — (} was motivated by the necesait:,r to cancel the inverse factor which may emerge from the
derivativea present in the field-strength tensor G,,. Actually, this expectation is not supported by perturbative
calculations. Take, e.g., the evolution kernel P's(X Z). It can be treated as a perturbative, leading-logarithm
approximation for the gluon distribution inside a quark {cf. [17]}. According to Eq.(5.28), PC'Q(X ,Z) does not
vanish for X = ¢_ If .F:(X} doea not vanish for X = £, the function f"(X;!) does not vanish both for X = 0 and
X = { and fy(z1,z1) is singular both for zy =0 and z3 = 0.

In fact, the combination J‘-’"(X)/(X — i€}(X — { + ie} appears in our parametrization (7.14) for the matrix
element of the operator constructed from two vector potentials A, A, taken in the light-cone gauge. In thia sense,
falx1, 29} or, what is the same, }'("(X)/X(X — ) can be treated as s basic gluon distribution given by the matrix
element of the product of fundamentat gluonic fields A, A, rather than by that of the secondary fields G, ,G%.
Note, however, that if f;(z1,23), i.c. .'F('(X)/X(X ~ ()}, has no singularities, then the meson electroproduction
amplitude has no imaginary part at leading swiat. Since this is impossible, f;{r,, 23) must have singularities, and
one may wish to explicitly display them specifying their nature, ¢.g., 1/(£2—4d€), 1/(z + f¢} This goal is achieved
automatically if }'g(X) is used as the basic distribution.

In our approach, the starting point is the double distribution F(z,y:t) defined through the non-forward matrix
element of the gauge-invariant gluonic cperator

(P | 222, G50 (0)E(0, 2; A)Ghu(2) | P)liam0
1 1
= %f:(p‘)éu(p} {p2) fo dr A % (e istpur=ten) 4 =080 oz, yi0)B(z + y < 1) dy- (611}

Aps explained earlier, in perturbation theory the spectral properties 0 < {2, 5. 2 +y} < 1 can be proved to any order
with the help of the a-repregentation. Furthermore, the functicn F{x,y;t) does not depend on the {-parameter.
The family of (-dependent nonforward gluon distributions }'g (X ;1) in obtained from Fy(#,y:t) by integration over
¥ (see (2.45)):

min{X;¢. X/}
}'{(X;l):/o Fo(X - . yit)dy. (9.12)

Recall that the double distribution Fy{z,v:t) can be trealed as a distribution function with respect to r and
a8 a distribution amplitude with respect to y. Thie physical interpretation suggesis that F,(z,y;!) s a regular
function for afl values of y and for at least nonzero values of r. We made this reservation because the evolution
asymptotically makes Fy(z,y:i; ) (we added the dependence on the factorization scale x) proportional to 8(x)
a8 g — oco. In this situstion, Fy(z,y;t; p) is singular at £ = 0. However, the §(z)-term still produces a regular
nonforward distribution Ff(X;1), though confined to the restricted region 0 < X < (.

Assuming that the double distribution Fy(z, yit; s} is finite everywhere, we conclude that the nonforward dis-
tribution }—C'(X:!”‘) in this case is also finite for all 0 £ X < 1 and, moreover, that it vanishes for X = 0. As
discussed earlier, the latter property is vital for factorization. If it is not fulfilled, the X-integral in the lowest-order
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expression diverges at the end-point X = 0, where the 1/(X — i) prescription is of no help. One may think
that this problem can be avoided if one uses the function f(" (X;1) defined through the Fourier transformation
with the variable X changing from —1 + ¢ to 1. Since the point X = 0 is inside the integration region, the
1/{X - ic) prescription apparently may help. Note, however, that if our function }‘c’ {X;t) does not vanish for
X =0, the Fourier transform fg(i’;t) iz not eontinuous both for ¥ = 0 and X = . As a result, the singularities
of f"(}?;t)/(f — ie{(X — ¢ + ic) are not integrable.

X. CONCLUSIONS

In this paper, we discussed basic properties of nonforward parton distributions, a new type of functions accu~
mulating nonperturbative information sbout hadron dynamics. We demonstrated that there are two basic ways to
describe asymmetric matrix elements {p'}C(0, z)|p} of quark and gluon light-cone operators €(0, z}. One possibil-
ity is to introduce double distributions F{z,y;t) which are independent of the longitudinal momentum asymmetry
parameter { = 1 - (p'z)/(pz) of the matrix element and refer to the light-cone fractions zp, yr of the original
hadron m tum p and me tum transfer r = p’ — p carried by the active parton. Another approach is to
use nonforward distribution functions F¢(X;t) which specify the light-cone projection of the total momentum
Xp = xp+ yr carried by the parton. These functions F¢(X;t) explicitly depend on . Both types of distributions
have hybrid properties, in some aspects resembling usnal parton distribution functions and in other ones the dis-
tribution amplitudes. Their !-dependence is analogous io that of hadronic form factors. The use of F¢(X;t) is
more convenient for ultimate applications to hard pQCD processes, resulting in a formalism that is very similar to
the standard pQCD parton picture. On the other hand, the double distributiona F({z,y;t} have more transparent
apeciral properties which haa serious advantages at the foundation stages of the pQCD analysia. In this paper, we
concentrated on goneral aspects of the theory of nonforward distributions and their uses. There are many interest-
ing applications to deeply virtual Cotnpton scattering and hazrd exclusive electroproduction processes which require
further, more specific studies of the nonferward distribution functiona including modeling their nonperturbative
low-energy shape, logarithmic pQCD evolution, calcuelation of nonlogarithmic higher-order corrections, efe. Work
in this direction has already been started [11)- [21].
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FIG. 1. Scalar model analoga of a), b} virtual forward Compten amplitude and c),d) deeply virtual Compton ecattering.

Xp-Vr/ /(c-x)p.:(r-v)r

a} b}

FIG. 2. Longitudinal mementun: flow for two components of the asymmetric distribution function F¢(X}: 0} X > ¢ and
b) X < {.
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FIG. 3. a) Btructure of momentus integral defining the ssymmetric distribution function F¢{X). 4) Cut of parton-hadron
amplitude corresponding to the residue for the region X > {. ¢) Cut of parton-hadron amplitude corresponding to the residue
for the region X < (.
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FIG. 7. a) Scaiar one-loop ankiog of the DYCS amplitude. Reduced graphs corresponding o §D-regimes Ba;~0,5)
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FIG. 4. Handbag diagram for deeply virtusl Compton scattering.

a} b e

FIG. 8. a} General structure of the leading SD contribution to the DVCS amplitude in QCD. 8} 52 configuration with
two long-distance parts.c) Matrix element with double-logarithmic dependence on the UV cut-off parameter 4.

a b o} d)

FIG. 5. Four-point amplitude corcesponding to the deeply virtusl Compton scattering.

a} b

FIG. 9. Hard exclusive meson clectoproduction process: a) Leading §P-contribution with quark nonforward distribution;
b) Soft contribution.

FIG. 6. Some tegimes responsible for powerlike contributione to the DVCS amplitude.
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FIG. I1. Double-flow vegime for the scalar analog of & meson form factor.
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